ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprc Unicode version

Theorem fvprc 5523
Description: A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
fvprc  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )

Proof of Theorem fvprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 brprcneu 5522 . 2  |-  ( -.  A  e.  _V  ->  -.  E! x  A F x )
2 tz6.12-2 5520 . 2  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
31, 2syl 14 1  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1363   E!weu 2037    e. wcel 2159   _Vcvv 2751   (/)c0 3436   class class class wbr 4017   ` cfv 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-setind 4550
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-iota 5192  df-fv 5238
This theorem is referenced by:  fv2prc  5565
  Copyright terms: Public domain W3C validator