ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprc Unicode version

Theorem fvprc 5463
Description: A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
fvprc  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )

Proof of Theorem fvprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 brprcneu 5462 . 2  |-  ( -.  A  e.  _V  ->  -.  E! x  A F x )
2 tz6.12-2 5460 . 2  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
31, 2syl 14 1  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1335   E!weu 2006    e. wcel 2128   _Vcvv 2712   (/)c0 3394   class class class wbr 3966   ` cfv 5171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-setind 4497
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-br 3967  df-iota 5136  df-fv 5179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator