Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvprc | Unicode version |
Description: A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
fvprc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 5462 | . 2 | |
2 | tz6.12-2 5460 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1335 weu 2006 wcel 2128 cvv 2712 c0 3394 class class class wbr 3966 cfv 5171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-setind 4497 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-br 3967 df-iota 5136 df-fv 5179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |