ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprc Unicode version

Theorem fvprc 5509
Description: A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
fvprc  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )

Proof of Theorem fvprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 brprcneu 5508 . 2  |-  ( -.  A  e.  _V  ->  -.  E! x  A F x )
2 tz6.12-2 5506 . 2  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
31, 2syl 14 1  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353   E!weu 2026    e. wcel 2148   _Vcvv 2737   (/)c0 3422   class class class wbr 4003   ` cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-iota 5178  df-fv 5224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator