ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiota2 Unicode version

Theorem dfiota2 5171
Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
dfiota2  |-  ( iota
x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem dfiota2
StepHypRef Expression
1 df-iota 5170 . 2  |-  ( iota
x ph )  =  U. { y  |  {
x  |  ph }  =  { y } }
2 df-sn 3595 . . . . . 6  |-  { y }  =  { x  |  x  =  y }
32eqeq2i 2186 . . . . 5  |-  ( { x  |  ph }  =  { y }  <->  { x  |  ph }  =  {
x  |  x  =  y } )
4 abbi 2289 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  <->  { x  |  ph }  =  {
x  |  x  =  y } )
53, 4bitr4i 187 . . . 4  |-  ( { x  |  ph }  =  { y }  <->  A. x
( ph  <->  x  =  y
) )
65abbii 2291 . . 3  |-  { y  |  { x  | 
ph }  =  {
y } }  =  { y  |  A. x ( ph  <->  x  =  y ) }
76unieqi 3815 . 2  |-  U. {
y  |  { x  |  ph }  =  {
y } }  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
81, 7eqtri 2196 1  |-  ( iota
x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1351    = wceq 1353   {cab 2161   {csn 3589   U.cuni 3805   iotacio 5168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-sn 3595  df-uni 3806  df-iota 5170
This theorem is referenced by:  nfiota1  5172  nfiotadw  5173  cbviota  5175  sb8iota  5177  iotaval  5181  iotanul  5185  eliota  5196  fv2  5502
  Copyright terms: Public domain W3C validator