Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfiota2 | Unicode version |
Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
dfiota2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iota 5170 | . 2 | |
2 | df-sn 3595 | . . . . . 6 | |
3 | 2 | eqeq2i 2186 | . . . . 5 |
4 | abbi 2289 | . . . . 5 | |
5 | 3, 4 | bitr4i 187 | . . . 4 |
6 | 5 | abbii 2291 | . . 3 |
7 | 6 | unieqi 3815 | . 2 |
8 | 1, 7 | eqtri 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wal 1351 wceq 1353 cab 2161 csn 3589 cuni 3805 cio 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-sn 3595 df-uni 3806 df-iota 5170 |
This theorem is referenced by: nfiota1 5172 nfiotadw 5173 cbviota 5175 sb8iota 5177 iotaval 5181 iotanul 5185 eliota 5196 fv2 5502 |
Copyright terms: Public domain | W3C validator |