Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfv Unicode version

Theorem elfv 5423
 Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv
Distinct variable groups:   ,   ,,   ,,
Allowed substitution hint:   ()

Proof of Theorem elfv
StepHypRef Expression
1 fv2 5420 . . 3
21eleq2i 2207 . 2
3 eluniab 3752 . 2
42, 3bitri 183 1
 Colors of variables: wff set class Syntax hints:   wa 103   wb 104  wal 1330  wex 1469   wcel 1481  cab 2126  cuni 3740   class class class wbr 3933  cfv 5127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2689  df-sn 3534  df-uni 3741  df-iota 5092  df-fv 5135 This theorem is referenced by:  fv3  5448  relelfvdm  5457
 Copyright terms: Public domain W3C validator