ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfv Unicode version

Theorem elfv 5574
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Distinct variable groups:    x, A    x, y, B    x, F, y
Allowed substitution hint:    A( y)

Proof of Theorem elfv
StepHypRef Expression
1 fv2 5571 . . 3  |-  ( F `
 B )  = 
U. { x  | 
A. y ( B F y  <->  y  =  x ) }
21eleq2i 2272 . 2  |-  ( A  e.  ( F `  B )  <->  A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) } )
3 eluniab 3862 . 2  |-  ( A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) }  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
42, 3bitri 184 1  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1371   E.wex 1515    e. wcel 2176   {cab 2191   U.cuni 3850   class class class wbr 4044   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-sn 3639  df-uni 3851  df-iota 5232  df-fv 5279
This theorem is referenced by:  fv3  5599  relelfvdm  5608
  Copyright terms: Public domain W3C validator