ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfv Unicode version

Theorem elfv 5514
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Distinct variable groups:    x, A    x, y, B    x, F, y
Allowed substitution hint:    A( y)

Proof of Theorem elfv
StepHypRef Expression
1 fv2 5511 . . 3  |-  ( F `
 B )  = 
U. { x  | 
A. y ( B F y  <->  y  =  x ) }
21eleq2i 2244 . 2  |-  ( A  e.  ( F `  B )  <->  A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) } )
3 eluniab 3822 . 2  |-  ( A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) }  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
42, 3bitri 184 1  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1351   E.wex 1492    e. wcel 2148   {cab 2163   U.cuni 3810   class class class wbr 4004   ` cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-sn 3599  df-uni 3811  df-iota 5179  df-fv 5225
This theorem is referenced by:  fv3  5539  relelfvdm  5548
  Copyright terms: Public domain W3C validator