ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfv Unicode version

Theorem elfv 5494
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Distinct variable groups:    x, A    x, y, B    x, F, y
Allowed substitution hint:    A( y)

Proof of Theorem elfv
StepHypRef Expression
1 fv2 5491 . . 3  |-  ( F `
 B )  = 
U. { x  | 
A. y ( B F y  <->  y  =  x ) }
21eleq2i 2237 . 2  |-  ( A  e.  ( F `  B )  <->  A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) } )
3 eluniab 3808 . 2  |-  ( A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) }  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
42, 3bitri 183 1  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485    e. wcel 2141   {cab 2156   U.cuni 3796   class class class wbr 3989   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sn 3589  df-uni 3797  df-iota 5160  df-fv 5206
This theorem is referenced by:  fv3  5519  relelfvdm  5528
  Copyright terms: Public domain W3C validator