ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfv Unicode version

Theorem elfv 5505
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Distinct variable groups:    x, A    x, y, B    x, F, y
Allowed substitution hint:    A( y)

Proof of Theorem elfv
StepHypRef Expression
1 fv2 5502 . . 3  |-  ( F `
 B )  = 
U. { x  | 
A. y ( B F y  <->  y  =  x ) }
21eleq2i 2242 . 2  |-  ( A  e.  ( F `  B )  <->  A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) } )
3 eluniab 3817 . 2  |-  ( A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) }  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
42, 3bitri 184 1  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1351   E.wex 1490    e. wcel 2146   {cab 2161   U.cuni 3805   class class class wbr 3998   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-sn 3595  df-uni 3806  df-iota 5170  df-fv 5216
This theorem is referenced by:  fv3  5530  relelfvdm  5539
  Copyright terms: Public domain W3C validator