Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfv | Unicode version |
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
elfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fv2 5502 | . . 3 | |
2 | 1 | eleq2i 2242 | . 2 |
3 | eluniab 3817 | . 2 | |
4 | 2, 3 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wal 1351 wex 1490 wcel 2146 cab 2161 cuni 3805 class class class wbr 3998 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-sn 3595 df-uni 3806 df-iota 5170 df-fv 5216 |
This theorem is referenced by: fv3 5530 relelfvdm 5539 |
Copyright terms: Public domain | W3C validator |