| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clelsb1 | Unicode version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2185). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| clelsb1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. . 3
| |
| 2 | 1 | sbco2 1994 |
. 2
|
| 3 | nfv 1552 |
. . . 4
| |
| 4 | eleq1 2270 |
. . . 4
| |
| 5 | 3, 4 | sbie 1815 |
. . 3
|
| 6 | 5 | sbbii 1789 |
. 2
|
| 7 | nfv 1552 |
. . 3
| |
| 8 | eleq1 2270 |
. . 3
| |
| 9 | 7, 8 | sbie 1815 |
. 2
|
| 10 | 2, 6, 9 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: hblem 2315 eqabdv 2336 nfraldya 2543 nfrexdya 2544 cbvreu 2740 sbcel1v 3068 rmo3 3098 setindel 4604 elirr 4607 en2lp 4620 zfregfr 4640 tfi 4648 bdcriota 16018 |
| Copyright terms: Public domain | W3C validator |