ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb1 Unicode version

Theorem clelsb1 2310
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2183). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb1  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
Distinct variable group:    x, A
Allowed substitution hint:    A( y)

Proof of Theorem clelsb1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1551 . . 3  |-  F/ x  w  e.  A
21sbco2 1993 . 2  |-  ( [ y  /  x ] [ x  /  w ] w  e.  A  <->  [ y  /  w ]
w  e.  A )
3 nfv 1551 . . . 4  |-  F/ w  x  e.  A
4 eleq1 2268 . . . 4  |-  ( w  =  x  ->  (
w  e.  A  <->  x  e.  A ) )
53, 4sbie 1814 . . 3  |-  ( [ x  /  w ]
w  e.  A  <->  x  e.  A )
65sbbii 1788 . 2  |-  ( [ y  /  x ] [ x  /  w ] w  e.  A  <->  [ y  /  x ]
x  e.  A )
7 nfv 1551 . . 3  |-  F/ w  y  e.  A
8 eleq1 2268 . . 3  |-  ( w  =  y  ->  (
w  e.  A  <->  y  e.  A ) )
97, 8sbie 1814 . 2  |-  ( [ y  /  w ]
w  e.  A  <->  y  e.  A )
102, 6, 93bitr3i 210 1  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1785    e. wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201
This theorem is referenced by:  hblem  2313  eqabdv  2334  nfraldya  2541  nfrexdya  2542  cbvreu  2736  sbcel1v  3061  rmo3  3090  setindel  4586  elirr  4589  en2lp  4602  zfregfr  4622  tfi  4630  bdcriota  15819
  Copyright terms: Public domain W3C validator