| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clelsb1 | Unicode version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2174). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| clelsb1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. . 3
| |
| 2 | 1 | sbco2 1984 |
. 2
|
| 3 | nfv 1542 |
. . . 4
| |
| 4 | eleq1 2259 |
. . . 4
| |
| 5 | 3, 4 | sbie 1805 |
. . 3
|
| 6 | 5 | sbbii 1779 |
. 2
|
| 7 | nfv 1542 |
. . 3
| |
| 8 | eleq1 2259 |
. . 3
| |
| 9 | 7, 8 | sbie 1805 |
. 2
|
| 10 | 2, 6, 9 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: hblem 2304 eqabdv 2325 nfraldya 2532 nfrexdya 2533 cbvreu 2727 sbcel1v 3052 rmo3 3081 setindel 4574 elirr 4577 en2lp 4590 zfregfr 4610 tfi 4618 bdcriota 15529 |
| Copyright terms: Public domain | W3C validator |