ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb1 Unicode version

Theorem clelsb1 2282
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2155). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb1  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
Distinct variable group:    x, A
Allowed substitution hint:    A( y)

Proof of Theorem clelsb1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1528 . . 3  |-  F/ x  w  e.  A
21sbco2 1965 . 2  |-  ( [ y  /  x ] [ x  /  w ] w  e.  A  <->  [ y  /  w ]
w  e.  A )
3 nfv 1528 . . . 4  |-  F/ w  x  e.  A
4 eleq1 2240 . . . 4  |-  ( w  =  x  ->  (
w  e.  A  <->  x  e.  A ) )
53, 4sbie 1791 . . 3  |-  ( [ x  /  w ]
w  e.  A  <->  x  e.  A )
65sbbii 1765 . 2  |-  ( [ y  /  x ] [ x  /  w ] w  e.  A  <->  [ y  /  x ]
x  e.  A )
7 nfv 1528 . . 3  |-  F/ w  y  e.  A
8 eleq1 2240 . . 3  |-  ( w  =  y  ->  (
w  e.  A  <->  y  e.  A ) )
97, 8sbie 1791 . 2  |-  ( [ y  /  w ]
w  e.  A  <->  y  e.  A )
102, 6, 93bitr3i 210 1  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1762    e. wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173
This theorem is referenced by:  hblem  2285  nfraldya  2512  nfrexdya  2513  cbvreu  2702  sbcel1v  3026  rmo3  3055  setindel  4538  elirr  4541  en2lp  4554  zfregfr  4574  tfi  4582  bdcriota  14638
  Copyright terms: Public domain W3C validator