| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clelsb1 | Unicode version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2183). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| clelsb1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. . 3
| |
| 2 | 1 | sbco2 1993 |
. 2
|
| 3 | nfv 1551 |
. . . 4
| |
| 4 | eleq1 2268 |
. . . 4
| |
| 5 | 3, 4 | sbie 1814 |
. . 3
|
| 6 | 5 | sbbii 1788 |
. 2
|
| 7 | nfv 1551 |
. . 3
| |
| 8 | eleq1 2268 |
. . 3
| |
| 9 | 7, 8 | sbie 1814 |
. 2
|
| 10 | 2, 6, 9 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: hblem 2313 eqabdv 2334 nfraldya 2541 nfrexdya 2542 cbvreu 2736 sbcel1v 3061 rmo3 3090 setindel 4586 elirr 4589 en2lp 4602 zfregfr 4622 tfi 4630 bdcriota 15819 |
| Copyright terms: Public domain | W3C validator |