Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clelsb1 | Unicode version |
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2143). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
clelsb1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . 3 | |
2 | 1 | sbco2 1953 | . 2 |
3 | nfv 1516 | . . . 4 | |
4 | eleq1 2228 | . . . 4 | |
5 | 3, 4 | sbie 1779 | . . 3 |
6 | 5 | sbbii 1753 | . 2 |
7 | nfv 1516 | . . 3 | |
8 | eleq1 2228 | . . 3 | |
9 | 7, 8 | sbie 1779 | . 2 |
10 | 2, 6, 9 | 3bitr3i 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wsb 1750 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: hblem 2273 nfraldya 2500 nfrexdya 2501 cbvreu 2689 sbcel1v 3012 rmo3 3041 setindel 4514 elirr 4517 en2lp 4530 zfregfr 4550 tfi 4558 bdcriota 13725 |
Copyright terms: Public domain | W3C validator |