| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clelsb1 | Unicode version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2207). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| clelsb1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. . 3
| |
| 2 | 1 | sbco2 2016 |
. 2
|
| 3 | nfv 1574 |
. . . 4
| |
| 4 | eleq1 2292 |
. . . 4
| |
| 5 | 3, 4 | sbie 1837 |
. . 3
|
| 6 | 5 | sbbii 1811 |
. 2
|
| 7 | nfv 1574 |
. . 3
| |
| 8 | eleq1 2292 |
. . 3
| |
| 9 | 7, 8 | sbie 1837 |
. 2
|
| 10 | 2, 6, 9 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: hblem 2337 eqabdv 2358 nfraldya 2565 nfrexdya 2566 cbvreu 2763 sbcel1v 3091 rmo3 3121 setindel 4629 elirr 4632 en2lp 4645 zfregfr 4665 tfi 4673 bdcriota 16204 |
| Copyright terms: Public domain | W3C validator |