| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumss | Unicode version | ||
| Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.) |
| Ref | Expression |
|---|---|
| sumss.1 |
|
| sumss.2 |
|
| sumss.3 |
|
| isumss.adc |
|
| isumss.m |
|
| sumss.4 |
|
| isumss.bdc |
|
| Ref | Expression |
|---|---|
| isumss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . . 4
| |
| 2 | isumss.m |
. . . 4
| |
| 3 | sumss.1 |
. . . . 5
| |
| 4 | sumss.4 |
. . . . 5
| |
| 5 | 3, 4 | sstrd 3211 |
. . . 4
|
| 6 | simpr 110 |
. . . . . 6
| |
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | sumss.2 |
. . . . . . . . . 10
| |
| 9 | 8 | ralrimiva 2581 |
. . . . . . . . 9
|
| 10 | 9 | ad2antrr 488 |
. . . . . . . 8
|
| 11 | nfcsb1v 3134 |
. . . . . . . . . 10
| |
| 12 | 11 | nfel1 2361 |
. . . . . . . . 9
|
| 13 | csbeq1a 3110 |
. . . . . . . . . 10
| |
| 14 | 13 | eleq1d 2276 |
. . . . . . . . 9
|
| 15 | 12, 14 | rspc 2878 |
. . . . . . . 8
|
| 16 | 7, 10, 15 | sylc 62 |
. . . . . . 7
|
| 17 | 0cnd 8100 |
. . . . . . 7
| |
| 18 | eleq1w 2268 |
. . . . . . . . 9
| |
| 19 | 18 | dcbid 840 |
. . . . . . . 8
|
| 20 | isumss.adc |
. . . . . . . . 9
| |
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 19, 21, 6 | rspcdva 2889 |
. . . . . . 7
|
| 23 | 16, 17, 22 | ifcldadc 3609 |
. . . . . 6
|
| 24 | nfcv 2350 |
. . . . . . 7
| |
| 25 | nfv 1552 |
. . . . . . . 8
| |
| 26 | nfcv 2350 |
. . . . . . . 8
| |
| 27 | 25, 11, 26 | nfif 3608 |
. . . . . . 7
|
| 28 | eleq1w 2268 |
. . . . . . . 8
| |
| 29 | 28, 13 | ifbieq1d 3602 |
. . . . . . 7
|
| 30 | eqid 2207 |
. . . . . . 7
| |
| 31 | 24, 27, 29, 30 | fvmptf 5695 |
. . . . . 6
|
| 32 | 6, 23, 31 | syl2anc 411 |
. . . . 5
|
| 33 | eqid 2207 |
. . . . . . . 8
| |
| 34 | 33 | fvmpts 5680 |
. . . . . . 7
|
| 35 | 7, 16, 34 | syl2anc 411 |
. . . . . 6
|
| 36 | 35, 22 | ifeq1dadc 3610 |
. . . . 5
|
| 37 | 32, 36 | eqtr4d 2243 |
. . . 4
|
| 38 | 8 | fmpttd 5758 |
. . . . 5
|
| 39 | 38 | ffvelcdmda 5738 |
. . . 4
|
| 40 | 1, 2, 5, 37, 20, 39 | zsumdc 11810 |
. . 3
|
| 41 | dfss1 3385 |
. . . . . . . . . 10
| |
| 42 | 3, 41 | sylib 122 |
. . . . . . . . 9
|
| 43 | 42 | eleq2d 2277 |
. . . . . . . 8
|
| 44 | elin 3364 |
. . . . . . . 8
| |
| 45 | 43, 44 | bitr3di 195 |
. . . . . . 7
|
| 46 | 45 | adantr 276 |
. . . . . 6
|
| 47 | 46 | ifbid 3601 |
. . . . 5
|
| 48 | simplr 528 |
. . . . . . . . . 10
| |
| 49 | 16 | adantlr 477 |
. . . . . . . . . 10
|
| 50 | eqid 2207 |
. . . . . . . . . . 11
| |
| 51 | 50 | fvmpts 5680 |
. . . . . . . . . 10
|
| 52 | 48, 49, 51 | syl2anc 411 |
. . . . . . . . 9
|
| 53 | simpr 110 |
. . . . . . . . . 10
| |
| 54 | 53 | iftrued 3586 |
. . . . . . . . 9
|
| 55 | 52, 54 | eqtr4d 2243 |
. . . . . . . 8
|
| 56 | simplr 528 |
. . . . . . . . . . 11
| |
| 57 | simpr 110 |
. . . . . . . . . . 11
| |
| 58 | 56, 57 | eldifd 3184 |
. . . . . . . . . 10
|
| 59 | sumss.3 |
. . . . . . . . . . . 12
| |
| 60 | 59 | ralrimiva 2581 |
. . . . . . . . . . 11
|
| 61 | 60 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 62 | 11 | nfeq1 2360 |
. . . . . . . . . . 11
|
| 63 | 13 | eqeq1d 2216 |
. . . . . . . . . . 11
|
| 64 | 62, 63 | rspc 2878 |
. . . . . . . . . 10
|
| 65 | 58, 61, 64 | sylc 62 |
. . . . . . . . 9
|
| 66 | 0cnd 8100 |
. . . . . . . . . . 11
| |
| 67 | 65, 66 | eqeltrd 2284 |
. . . . . . . . . 10
|
| 68 | 56, 67, 51 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 57 | iffalsed 3589 |
. . . . . . . . 9
|
| 70 | 65, 68, 69 | 3eqtr4d 2250 |
. . . . . . . 8
|
| 71 | 22 | adantr 276 |
. . . . . . . . 9
|
| 72 | exmiddc 838 |
. . . . . . . . 9
| |
| 73 | 71, 72 | syl 14 |
. . . . . . . 8
|
| 74 | 55, 70, 73 | mpjaodan 800 |
. . . . . . 7
|
| 75 | eleq1w 2268 |
. . . . . . . . 9
| |
| 76 | 75 | dcbid 840 |
. . . . . . . 8
|
| 77 | isumss.bdc |
. . . . . . . . 9
| |
| 78 | 77 | adantr 276 |
. . . . . . . 8
|
| 79 | 76, 78, 6 | rspcdva 2889 |
. . . . . . 7
|
| 80 | 74, 79 | ifeq1dadc 3610 |
. . . . . 6
|
| 81 | ifandc 3620 |
. . . . . . 7
| |
| 82 | 79, 81 | syl 14 |
. . . . . 6
|
| 83 | 80, 82 | eqtr4d 2243 |
. . . . 5
|
| 84 | 47, 32, 83 | 3eqtr4d 2250 |
. . . 4
|
| 85 | 8 | adantlr 477 |
. . . . . . 7
|
| 86 | simpll 527 |
. . . . . . . . 9
| |
| 87 | simplr 528 |
. . . . . . . . . 10
| |
| 88 | simpr 110 |
. . . . . . . . . 10
| |
| 89 | 87, 88 | eldifd 3184 |
. . . . . . . . 9
|
| 90 | 86, 89, 59 | syl2anc 411 |
. . . . . . . 8
|
| 91 | 0cnd 8100 |
. . . . . . . 8
| |
| 92 | 90, 91 | eqeltrd 2284 |
. . . . . . 7
|
| 93 | eleq1w 2268 |
. . . . . . . . . 10
| |
| 94 | 93 | dcbid 840 |
. . . . . . . . 9
|
| 95 | 20 | adantr 276 |
. . . . . . . . 9
|
| 96 | 4 | sselda 3201 |
. . . . . . . . 9
|
| 97 | 94, 95, 96 | rspcdva 2889 |
. . . . . . . 8
|
| 98 | exmiddc 838 |
. . . . . . . 8
| |
| 99 | 97, 98 | syl 14 |
. . . . . . 7
|
| 100 | 85, 92, 99 | mpjaodan 800 |
. . . . . 6
|
| 101 | 100 | fmpttd 5758 |
. . . . 5
|
| 102 | 101 | ffvelcdmda 5738 |
. . . 4
|
| 103 | 1, 2, 4, 84, 77, 102 | zsumdc 11810 |
. . 3
|
| 104 | 40, 103 | eqtr4d 2243 |
. 2
|
| 105 | sumfct 11800 |
. . 3
| |
| 106 | 9, 105 | syl 14 |
. 2
|
| 107 | 100 | ralrimiva 2581 |
. . 3
|
| 108 | sumfct 11800 |
. . 3
| |
| 109 | 107, 108 | syl 14 |
. 2
|
| 110 | 104, 106, 109 | 3eqtr3d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 |
| This theorem is referenced by: fisumss 11818 isumss2 11819 binomlem 11909 |
| Copyright terms: Public domain | W3C validator |