| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumss | Unicode version | ||
| Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.) |
| Ref | Expression |
|---|---|
| sumss.1 |
|
| sumss.2 |
|
| sumss.3 |
|
| isumss.adc |
|
| isumss.m |
|
| sumss.4 |
|
| isumss.bdc |
|
| Ref | Expression |
|---|---|
| isumss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . 4
| |
| 2 | isumss.m |
. . . 4
| |
| 3 | sumss.1 |
. . . . 5
| |
| 4 | sumss.4 |
. . . . 5
| |
| 5 | 3, 4 | sstrd 3234 |
. . . 4
|
| 6 | simpr 110 |
. . . . . 6
| |
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | sumss.2 |
. . . . . . . . . 10
| |
| 9 | 8 | ralrimiva 2603 |
. . . . . . . . 9
|
| 10 | 9 | ad2antrr 488 |
. . . . . . . 8
|
| 11 | nfcsb1v 3157 |
. . . . . . . . . 10
| |
| 12 | 11 | nfel1 2383 |
. . . . . . . . 9
|
| 13 | csbeq1a 3133 |
. . . . . . . . . 10
| |
| 14 | 13 | eleq1d 2298 |
. . . . . . . . 9
|
| 15 | 12, 14 | rspc 2901 |
. . . . . . . 8
|
| 16 | 7, 10, 15 | sylc 62 |
. . . . . . 7
|
| 17 | 0cnd 8135 |
. . . . . . 7
| |
| 18 | eleq1w 2290 |
. . . . . . . . 9
| |
| 19 | 18 | dcbid 843 |
. . . . . . . 8
|
| 20 | isumss.adc |
. . . . . . . . 9
| |
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 19, 21, 6 | rspcdva 2912 |
. . . . . . 7
|
| 23 | 16, 17, 22 | ifcldadc 3632 |
. . . . . 6
|
| 24 | nfcv 2372 |
. . . . . . 7
| |
| 25 | nfv 1574 |
. . . . . . . 8
| |
| 26 | nfcv 2372 |
. . . . . . . 8
| |
| 27 | 25, 11, 26 | nfif 3631 |
. . . . . . 7
|
| 28 | eleq1w 2290 |
. . . . . . . 8
| |
| 29 | 28, 13 | ifbieq1d 3625 |
. . . . . . 7
|
| 30 | eqid 2229 |
. . . . . . 7
| |
| 31 | 24, 27, 29, 30 | fvmptf 5726 |
. . . . . 6
|
| 32 | 6, 23, 31 | syl2anc 411 |
. . . . 5
|
| 33 | eqid 2229 |
. . . . . . . 8
| |
| 34 | 33 | fvmpts 5711 |
. . . . . . 7
|
| 35 | 7, 16, 34 | syl2anc 411 |
. . . . . 6
|
| 36 | 35, 22 | ifeq1dadc 3633 |
. . . . 5
|
| 37 | 32, 36 | eqtr4d 2265 |
. . . 4
|
| 38 | 8 | fmpttd 5789 |
. . . . 5
|
| 39 | 38 | ffvelcdmda 5769 |
. . . 4
|
| 40 | 1, 2, 5, 37, 20, 39 | zsumdc 11890 |
. . 3
|
| 41 | dfss1 3408 |
. . . . . . . . . 10
| |
| 42 | 3, 41 | sylib 122 |
. . . . . . . . 9
|
| 43 | 42 | eleq2d 2299 |
. . . . . . . 8
|
| 44 | elin 3387 |
. . . . . . . 8
| |
| 45 | 43, 44 | bitr3di 195 |
. . . . . . 7
|
| 46 | 45 | adantr 276 |
. . . . . 6
|
| 47 | 46 | ifbid 3624 |
. . . . 5
|
| 48 | simplr 528 |
. . . . . . . . . 10
| |
| 49 | 16 | adantlr 477 |
. . . . . . . . . 10
|
| 50 | eqid 2229 |
. . . . . . . . . . 11
| |
| 51 | 50 | fvmpts 5711 |
. . . . . . . . . 10
|
| 52 | 48, 49, 51 | syl2anc 411 |
. . . . . . . . 9
|
| 53 | simpr 110 |
. . . . . . . . . 10
| |
| 54 | 53 | iftrued 3609 |
. . . . . . . . 9
|
| 55 | 52, 54 | eqtr4d 2265 |
. . . . . . . 8
|
| 56 | simplr 528 |
. . . . . . . . . . 11
| |
| 57 | simpr 110 |
. . . . . . . . . . 11
| |
| 58 | 56, 57 | eldifd 3207 |
. . . . . . . . . 10
|
| 59 | sumss.3 |
. . . . . . . . . . . 12
| |
| 60 | 59 | ralrimiva 2603 |
. . . . . . . . . . 11
|
| 61 | 60 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 62 | 11 | nfeq1 2382 |
. . . . . . . . . . 11
|
| 63 | 13 | eqeq1d 2238 |
. . . . . . . . . . 11
|
| 64 | 62, 63 | rspc 2901 |
. . . . . . . . . 10
|
| 65 | 58, 61, 64 | sylc 62 |
. . . . . . . . 9
|
| 66 | 0cnd 8135 |
. . . . . . . . . . 11
| |
| 67 | 65, 66 | eqeltrd 2306 |
. . . . . . . . . 10
|
| 68 | 56, 67, 51 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 57 | iffalsed 3612 |
. . . . . . . . 9
|
| 70 | 65, 68, 69 | 3eqtr4d 2272 |
. . . . . . . 8
|
| 71 | 22 | adantr 276 |
. . . . . . . . 9
|
| 72 | exmiddc 841 |
. . . . . . . . 9
| |
| 73 | 71, 72 | syl 14 |
. . . . . . . 8
|
| 74 | 55, 70, 73 | mpjaodan 803 |
. . . . . . 7
|
| 75 | eleq1w 2290 |
. . . . . . . . 9
| |
| 76 | 75 | dcbid 843 |
. . . . . . . 8
|
| 77 | isumss.bdc |
. . . . . . . . 9
| |
| 78 | 77 | adantr 276 |
. . . . . . . 8
|
| 79 | 76, 78, 6 | rspcdva 2912 |
. . . . . . 7
|
| 80 | 74, 79 | ifeq1dadc 3633 |
. . . . . 6
|
| 81 | ifandc 3643 |
. . . . . . 7
| |
| 82 | 79, 81 | syl 14 |
. . . . . 6
|
| 83 | 80, 82 | eqtr4d 2265 |
. . . . 5
|
| 84 | 47, 32, 83 | 3eqtr4d 2272 |
. . . 4
|
| 85 | 8 | adantlr 477 |
. . . . . . 7
|
| 86 | simpll 527 |
. . . . . . . . 9
| |
| 87 | simplr 528 |
. . . . . . . . . 10
| |
| 88 | simpr 110 |
. . . . . . . . . 10
| |
| 89 | 87, 88 | eldifd 3207 |
. . . . . . . . 9
|
| 90 | 86, 89, 59 | syl2anc 411 |
. . . . . . . 8
|
| 91 | 0cnd 8135 |
. . . . . . . 8
| |
| 92 | 90, 91 | eqeltrd 2306 |
. . . . . . 7
|
| 93 | eleq1w 2290 |
. . . . . . . . . 10
| |
| 94 | 93 | dcbid 843 |
. . . . . . . . 9
|
| 95 | 20 | adantr 276 |
. . . . . . . . 9
|
| 96 | 4 | sselda 3224 |
. . . . . . . . 9
|
| 97 | 94, 95, 96 | rspcdva 2912 |
. . . . . . . 8
|
| 98 | exmiddc 841 |
. . . . . . . 8
| |
| 99 | 97, 98 | syl 14 |
. . . . . . 7
|
| 100 | 85, 92, 99 | mpjaodan 803 |
. . . . . 6
|
| 101 | 100 | fmpttd 5789 |
. . . . 5
|
| 102 | 101 | ffvelcdmda 5769 |
. . . 4
|
| 103 | 1, 2, 4, 84, 77, 102 | zsumdc 11890 |
. . 3
|
| 104 | 40, 103 | eqtr4d 2265 |
. 2
|
| 105 | sumfct 11880 |
. . 3
| |
| 106 | 9, 105 | syl 14 |
. 2
|
| 107 | 100 | ralrimiva 2603 |
. . 3
|
| 108 | sumfct 11880 |
. . 3
| |
| 109 | 107, 108 | syl 14 |
. 2
|
| 110 | 104, 106, 109 | 3eqtr3d 2270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 |
| This theorem is referenced by: fisumss 11898 isumss2 11899 binomlem 11989 |
| Copyright terms: Public domain | W3C validator |