ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss Unicode version

Theorem isumss 11534
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
Hypotheses
Ref Expression
sumss.1  |-  ( ph  ->  A  C_  B )
sumss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
sumss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
isumss.adc  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
isumss.m  |-  ( ph  ->  M  e.  ZZ )
sumss.4  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
isumss.bdc  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )
Assertion
Ref Expression
isumss  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Distinct variable groups:    A, k, j    B, k, j    C, j   
j, M, k    ph, k,
j
Allowed substitution hint:    C( k)

Proof of Theorem isumss
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 isumss.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 sumss.1 . . . . 5  |-  ( ph  ->  A  C_  B )
4 sumss.4 . . . . 5  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
53, 4sstrd 3189 . . . 4  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
6 simpr 110 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
7 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  A )  ->  m  e.  A )
8 sumss.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
98ralrimiva 2567 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
109ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  A )  ->  A. k  e.  A  C  e.  CC )
11 nfcsb1v 3113 . . . . . . . . . 10  |-  F/_ k [_ m  /  k ]_ C
1211nfel1 2347 . . . . . . . . 9  |-  F/ k
[_ m  /  k ]_ C  e.  CC
13 csbeq1a 3089 . . . . . . . . . 10  |-  ( k  =  m  ->  C  =  [_ m  /  k ]_ C )
1413eleq1d 2262 . . . . . . . . 9  |-  ( k  =  m  ->  ( C  e.  CC  <->  [_ m  / 
k ]_ C  e.  CC ) )
1512, 14rspc 2858 . . . . . . . 8  |-  ( m  e.  A  ->  ( A. k  e.  A  C  e.  CC  ->  [_ m  /  k ]_ C  e.  CC )
)
167, 10, 15sylc 62 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  A )  ->  [_ m  /  k ]_ C  e.  CC )
17 0cnd 8012 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  -.  m  e.  A )  ->  0  e.  CC )
18 eleq1w 2254 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  e.  A  <->  m  e.  A ) )
1918dcbid 839 . . . . . . . 8  |-  ( j  =  m  ->  (DECID  j  e.  A  <-> DECID  m  e.  A )
)
20 isumss.adc . . . . . . . . 9  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
2219, 21, 6rspcdva 2869 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  -> DECID  m  e.  A
)
2316, 17, 22ifcldadc 3586 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
24 nfcv 2336 . . . . . . 7  |-  F/_ k
m
25 nfv 1539 . . . . . . . 8  |-  F/ k  m  e.  A
26 nfcv 2336 . . . . . . . 8  |-  F/_ k
0
2725, 11, 26nfif 3585 . . . . . . 7  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
28 eleq1w 2254 . . . . . . . 8  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
2928, 13ifbieq1d 3579 . . . . . . 7  |-  ( k  =  m  ->  if ( k  e.  A ,  C ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
30 eqid 2193 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  |->  if ( k  e.  A ,  C ,  0 ) )  =  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) )
3124, 27, 29, 30fvmptf 5650 . . . . . 6  |-  ( ( m  e.  ( ZZ>= `  M )  /\  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )  -> 
( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
326, 23, 31syl2anc 411 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
33 eqid 2193 . . . . . . . 8  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
3433fvmpts 5635 . . . . . . 7  |-  ( ( m  e.  A  /\  [_ m  /  k ]_ C  e.  CC )  ->  ( ( k  e.  A  |->  C ) `  m )  =  [_ m  /  k ]_ C
)
357, 16, 34syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  =  [_ m  /  k ]_ C
)
3635, 22ifeq1dadc 3587 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  A , 
( ( k  e.  A  |->  C ) `  m ) ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
3732, 36eqtr4d 2229 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m
) ,  0 ) )
388fmpttd 5713 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  C ) : A --> CC )
3938ffvelcdmda 5693 . . . 4  |-  ( (
ph  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  e.  CC )
401, 2, 5, 37, 20, 39zsumdc 11527 . . 3  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) ) ) )
41 dfss1 3363 . . . . . . . . . 10  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )
423, 41sylib 122 . . . . . . . . 9  |-  ( ph  ->  ( B  i^i  A
)  =  A )
4342eleq2d 2263 . . . . . . . 8  |-  ( ph  ->  ( m  e.  ( B  i^i  A )  <-> 
m  e.  A ) )
44 elin 3342 . . . . . . . 8  |-  ( m  e.  ( B  i^i  A )  <->  ( m  e.  B  /\  m  e.  A ) )
4543, 44bitr3di 195 . . . . . . 7  |-  ( ph  ->  ( m  e.  A  <->  ( m  e.  B  /\  m  e.  A )
) )
4645adantr 276 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( m  e.  A  <->  ( m  e.  B  /\  m  e.  A ) ) )
4746ifbid 3578 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  if ( ( m  e.  B  /\  m  e.  A ) ,  [_ m  /  k ]_ C ,  0 ) )
48 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  m  e.  B )
4916adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  [_ m  / 
k ]_ C  e.  CC )
50 eqid 2193 . . . . . . . . . . 11  |-  ( k  e.  B  |->  C )  =  ( k  e.  B  |->  C )
5150fvmpts 5635 . . . . . . . . . 10  |-  ( ( m  e.  B  /\  [_ m  /  k ]_ C  e.  CC )  ->  ( ( k  e.  B  |->  C ) `  m )  =  [_ m  /  k ]_ C
)
5248, 49, 51syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  ( (
k  e.  B  |->  C ) `  m )  =  [_ m  / 
k ]_ C )
53 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  m  e.  A )
5453iftrued 3564 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  [_ m  / 
k ]_ C )
5552, 54eqtr4d 2229 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  ( (
k  e.  B  |->  C ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
56 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  m  e.  B )
57 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  -.  m  e.  A )
5856, 57eldifd 3163 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  m  e.  ( B  \  A ) )
59 sumss.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
6059ralrimiva 2567 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  ( B  \  A ) C  =  0 )
6160ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  A. k  e.  ( B  \  A
) C  =  0 )
6211nfeq1 2346 . . . . . . . . . . 11  |-  F/ k
[_ m  /  k ]_ C  =  0
6313eqeq1d 2202 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( C  =  0  <->  [_ m  / 
k ]_ C  =  0 ) )
6462, 63rspc 2858 . . . . . . . . . 10  |-  ( m  e.  ( B  \  A )  ->  ( A. k  e.  ( B  \  A ) C  =  0  ->  [_ m  /  k ]_ C  =  0 ) )
6558, 61, 64sylc 62 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  [_ m  / 
k ]_ C  =  0 )
66 0cnd 8012 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  0  e.  CC )
6765, 66eqeltrd 2270 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  [_ m  / 
k ]_ C  e.  CC )
6856, 67, 51syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  ( (
k  e.  B  |->  C ) `  m )  =  [_ m  / 
k ]_ C )
6957iffalsed 3567 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
7065, 68, 693eqtr4d 2236 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  ( (
k  e.  B  |->  C ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
7122adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  B )  -> DECID  m  e.  A
)
72 exmiddc 837 . . . . . . . . 9  |-  (DECID  m  e.  A  ->  ( m  e.  A  \/  -.  m  e.  A )
)
7371, 72syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  B )  ->  (
m  e.  A  \/  -.  m  e.  A
) )
7455, 70, 73mpjaodan 799 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
75 eleq1w 2254 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  e.  B  <->  m  e.  B ) )
7675dcbid 839 . . . . . . . 8  |-  ( j  =  m  ->  (DECID  j  e.  B  <-> DECID  m  e.  B )
)
77 isumss.bdc . . . . . . . . 9  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )
7877adantr 276 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )
7976, 78, 6rspcdva 2869 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  -> DECID  m  e.  B
)
8074, 79ifeq1dadc 3587 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  B , 
( ( k  e.  B  |->  C ) `  m ) ,  0 )  =  if ( m  e.  B ,  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) ,  0 ) )
81 ifandc 3595 . . . . . . 7  |-  (DECID  m  e.  B  ->  if (
( m  e.  B  /\  m  e.  A
) ,  [_ m  /  k ]_ C ,  0 )  =  if ( m  e.  B ,  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) ,  0 ) )
8279, 81syl 14 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
( m  e.  B  /\  m  e.  A
) ,  [_ m  /  k ]_ C ,  0 )  =  if ( m  e.  B ,  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) ,  0 ) )
8380, 82eqtr4d 2229 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  B , 
( ( k  e.  B  |->  C ) `  m ) ,  0 )  =  if ( ( m  e.  B  /\  m  e.  A
) ,  [_ m  /  k ]_ C ,  0 ) )
8447, 32, 833eqtr4d 2236 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) )
858adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B )  /\  k  e.  A )  ->  C  e.  CC )
86 simpll 527 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  ph )
87 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  k  e.  B )
88 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  -.  k  e.  A
)
8987, 88eldifd 3163 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  k  e.  ( B 
\  A ) )
9086, 89, 59syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  C  =  0 )
91 0cnd 8012 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  0  e.  CC )
9290, 91eqeltrd 2270 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  C  e.  CC )
93 eleq1w 2254 . . . . . . . . . 10  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
9493dcbid 839 . . . . . . . . 9  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
9520adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
964sselda 3179 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  ( ZZ>= `  M )
)
9794, 95, 96rspcdva 2869 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  -> DECID  k  e.  A
)
98 exmiddc 837 . . . . . . . 8  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
9997, 98syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  \/  -.  k  e.  A
) )
10085, 92, 99mpjaodan 799 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
101100fmpttd 5713 . . . . 5  |-  ( ph  ->  ( k  e.  B  |->  C ) : B --> CC )
102101ffvelcdmda 5693 . . . 4  |-  ( (
ph  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  e.  CC )
1031, 2, 4, 84, 77, 102zsumdc 11527 . . 3  |-  ( ph  -> 
sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) ) ) )
10440, 103eqtr4d 2229 . 2  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m ) )
105 sumfct 11517 . . 3  |-  ( A. k  e.  A  C  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `
 m )  = 
sum_ k  e.  A  C )
1069, 105syl 14 . 2  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
)
107100ralrimiva 2567 . . 3  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
108 sumfct 11517 . . 3  |-  ( A. k  e.  B  C  e.  CC  ->  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `
 m )  = 
sum_ k  e.  B  C )
109107, 108syl 14 . 2  |-  ( ph  -> 
sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m )  =  sum_ k  e.  B  C
)
110104, 106, 1093eqtr3d 2234 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472   [_csb 3080    \ cdif 3150    i^i cin 3152    C_ wss 3153   ifcif 3557    |-> cmpt 4090   ` cfv 5254   CCcc 7870   0cc0 7872    + caddc 7875   ZZcz 9317   ZZ>=cuz 9592    seqcseq 10518    ~~> cli 11421   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  fisumss  11535  isumss2  11536  binomlem  11626
  Copyright terms: Public domain W3C validator