| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumss | Unicode version | ||
| Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.) |
| Ref | Expression |
|---|---|
| sumss.1 |
|
| sumss.2 |
|
| sumss.3 |
|
| isumss.adc |
|
| isumss.m |
|
| sumss.4 |
|
| isumss.bdc |
|
| Ref | Expression |
|---|---|
| isumss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . . 4
| |
| 2 | isumss.m |
. . . 4
| |
| 3 | sumss.1 |
. . . . 5
| |
| 4 | sumss.4 |
. . . . 5
| |
| 5 | 3, 4 | sstrd 3202 |
. . . 4
|
| 6 | simpr 110 |
. . . . . 6
| |
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | sumss.2 |
. . . . . . . . . 10
| |
| 9 | 8 | ralrimiva 2578 |
. . . . . . . . 9
|
| 10 | 9 | ad2antrr 488 |
. . . . . . . 8
|
| 11 | nfcsb1v 3125 |
. . . . . . . . . 10
| |
| 12 | 11 | nfel1 2358 |
. . . . . . . . 9
|
| 13 | csbeq1a 3101 |
. . . . . . . . . 10
| |
| 14 | 13 | eleq1d 2273 |
. . . . . . . . 9
|
| 15 | 12, 14 | rspc 2870 |
. . . . . . . 8
|
| 16 | 7, 10, 15 | sylc 62 |
. . . . . . 7
|
| 17 | 0cnd 8064 |
. . . . . . 7
| |
| 18 | eleq1w 2265 |
. . . . . . . . 9
| |
| 19 | 18 | dcbid 839 |
. . . . . . . 8
|
| 20 | isumss.adc |
. . . . . . . . 9
| |
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 19, 21, 6 | rspcdva 2881 |
. . . . . . 7
|
| 23 | 16, 17, 22 | ifcldadc 3599 |
. . . . . 6
|
| 24 | nfcv 2347 |
. . . . . . 7
| |
| 25 | nfv 1550 |
. . . . . . . 8
| |
| 26 | nfcv 2347 |
. . . . . . . 8
| |
| 27 | 25, 11, 26 | nfif 3598 |
. . . . . . 7
|
| 28 | eleq1w 2265 |
. . . . . . . 8
| |
| 29 | 28, 13 | ifbieq1d 3592 |
. . . . . . 7
|
| 30 | eqid 2204 |
. . . . . . 7
| |
| 31 | 24, 27, 29, 30 | fvmptf 5671 |
. . . . . 6
|
| 32 | 6, 23, 31 | syl2anc 411 |
. . . . 5
|
| 33 | eqid 2204 |
. . . . . . . 8
| |
| 34 | 33 | fvmpts 5656 |
. . . . . . 7
|
| 35 | 7, 16, 34 | syl2anc 411 |
. . . . . 6
|
| 36 | 35, 22 | ifeq1dadc 3600 |
. . . . 5
|
| 37 | 32, 36 | eqtr4d 2240 |
. . . 4
|
| 38 | 8 | fmpttd 5734 |
. . . . 5
|
| 39 | 38 | ffvelcdmda 5714 |
. . . 4
|
| 40 | 1, 2, 5, 37, 20, 39 | zsumdc 11666 |
. . 3
|
| 41 | dfss1 3376 |
. . . . . . . . . 10
| |
| 42 | 3, 41 | sylib 122 |
. . . . . . . . 9
|
| 43 | 42 | eleq2d 2274 |
. . . . . . . 8
|
| 44 | elin 3355 |
. . . . . . . 8
| |
| 45 | 43, 44 | bitr3di 195 |
. . . . . . 7
|
| 46 | 45 | adantr 276 |
. . . . . 6
|
| 47 | 46 | ifbid 3591 |
. . . . 5
|
| 48 | simplr 528 |
. . . . . . . . . 10
| |
| 49 | 16 | adantlr 477 |
. . . . . . . . . 10
|
| 50 | eqid 2204 |
. . . . . . . . . . 11
| |
| 51 | 50 | fvmpts 5656 |
. . . . . . . . . 10
|
| 52 | 48, 49, 51 | syl2anc 411 |
. . . . . . . . 9
|
| 53 | simpr 110 |
. . . . . . . . . 10
| |
| 54 | 53 | iftrued 3577 |
. . . . . . . . 9
|
| 55 | 52, 54 | eqtr4d 2240 |
. . . . . . . 8
|
| 56 | simplr 528 |
. . . . . . . . . . 11
| |
| 57 | simpr 110 |
. . . . . . . . . . 11
| |
| 58 | 56, 57 | eldifd 3175 |
. . . . . . . . . 10
|
| 59 | sumss.3 |
. . . . . . . . . . . 12
| |
| 60 | 59 | ralrimiva 2578 |
. . . . . . . . . . 11
|
| 61 | 60 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 62 | 11 | nfeq1 2357 |
. . . . . . . . . . 11
|
| 63 | 13 | eqeq1d 2213 |
. . . . . . . . . . 11
|
| 64 | 62, 63 | rspc 2870 |
. . . . . . . . . 10
|
| 65 | 58, 61, 64 | sylc 62 |
. . . . . . . . 9
|
| 66 | 0cnd 8064 |
. . . . . . . . . . 11
| |
| 67 | 65, 66 | eqeltrd 2281 |
. . . . . . . . . 10
|
| 68 | 56, 67, 51 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 57 | iffalsed 3580 |
. . . . . . . . 9
|
| 70 | 65, 68, 69 | 3eqtr4d 2247 |
. . . . . . . 8
|
| 71 | 22 | adantr 276 |
. . . . . . . . 9
|
| 72 | exmiddc 837 |
. . . . . . . . 9
| |
| 73 | 71, 72 | syl 14 |
. . . . . . . 8
|
| 74 | 55, 70, 73 | mpjaodan 799 |
. . . . . . 7
|
| 75 | eleq1w 2265 |
. . . . . . . . 9
| |
| 76 | 75 | dcbid 839 |
. . . . . . . 8
|
| 77 | isumss.bdc |
. . . . . . . . 9
| |
| 78 | 77 | adantr 276 |
. . . . . . . 8
|
| 79 | 76, 78, 6 | rspcdva 2881 |
. . . . . . 7
|
| 80 | 74, 79 | ifeq1dadc 3600 |
. . . . . 6
|
| 81 | ifandc 3609 |
. . . . . . 7
| |
| 82 | 79, 81 | syl 14 |
. . . . . 6
|
| 83 | 80, 82 | eqtr4d 2240 |
. . . . 5
|
| 84 | 47, 32, 83 | 3eqtr4d 2247 |
. . . 4
|
| 85 | 8 | adantlr 477 |
. . . . . . 7
|
| 86 | simpll 527 |
. . . . . . . . 9
| |
| 87 | simplr 528 |
. . . . . . . . . 10
| |
| 88 | simpr 110 |
. . . . . . . . . 10
| |
| 89 | 87, 88 | eldifd 3175 |
. . . . . . . . 9
|
| 90 | 86, 89, 59 | syl2anc 411 |
. . . . . . . 8
|
| 91 | 0cnd 8064 |
. . . . . . . 8
| |
| 92 | 90, 91 | eqeltrd 2281 |
. . . . . . 7
|
| 93 | eleq1w 2265 |
. . . . . . . . . 10
| |
| 94 | 93 | dcbid 839 |
. . . . . . . . 9
|
| 95 | 20 | adantr 276 |
. . . . . . . . 9
|
| 96 | 4 | sselda 3192 |
. . . . . . . . 9
|
| 97 | 94, 95, 96 | rspcdva 2881 |
. . . . . . . 8
|
| 98 | exmiddc 837 |
. . . . . . . 8
| |
| 99 | 97, 98 | syl 14 |
. . . . . . 7
|
| 100 | 85, 92, 99 | mpjaodan 799 |
. . . . . 6
|
| 101 | 100 | fmpttd 5734 |
. . . . 5
|
| 102 | 101 | ffvelcdmda 5714 |
. . . 4
|
| 103 | 1, 2, 4, 84, 77, 102 | zsumdc 11666 |
. . 3
|
| 104 | 40, 103 | eqtr4d 2240 |
. 2
|
| 105 | sumfct 11656 |
. . 3
| |
| 106 | 9, 105 | syl 14 |
. 2
|
| 107 | 100 | ralrimiva 2578 |
. . 3
|
| 108 | sumfct 11656 |
. . 3
| |
| 109 | 107, 108 | syl 14 |
. 2
|
| 110 | 104, 106, 109 | 3eqtr3d 2245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11124 df-rsqrt 11280 df-abs 11281 df-clim 11561 df-sumdc 11636 |
| This theorem is referenced by: fisumss 11674 isumss2 11675 binomlem 11765 |
| Copyright terms: Public domain | W3C validator |