ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss Unicode version

Theorem isumss 11897
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
Hypotheses
Ref Expression
sumss.1  |-  ( ph  ->  A  C_  B )
sumss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
sumss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
isumss.adc  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
isumss.m  |-  ( ph  ->  M  e.  ZZ )
sumss.4  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
isumss.bdc  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )
Assertion
Ref Expression
isumss  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Distinct variable groups:    A, k, j    B, k, j    C, j   
j, M, k    ph, k,
j
Allowed substitution hint:    C( k)

Proof of Theorem isumss
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 isumss.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 sumss.1 . . . . 5  |-  ( ph  ->  A  C_  B )
4 sumss.4 . . . . 5  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
53, 4sstrd 3234 . . . 4  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
6 simpr 110 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
7 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  A )  ->  m  e.  A )
8 sumss.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
98ralrimiva 2603 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
109ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  A )  ->  A. k  e.  A  C  e.  CC )
11 nfcsb1v 3157 . . . . . . . . . 10  |-  F/_ k [_ m  /  k ]_ C
1211nfel1 2383 . . . . . . . . 9  |-  F/ k
[_ m  /  k ]_ C  e.  CC
13 csbeq1a 3133 . . . . . . . . . 10  |-  ( k  =  m  ->  C  =  [_ m  /  k ]_ C )
1413eleq1d 2298 . . . . . . . . 9  |-  ( k  =  m  ->  ( C  e.  CC  <->  [_ m  / 
k ]_ C  e.  CC ) )
1512, 14rspc 2901 . . . . . . . 8  |-  ( m  e.  A  ->  ( A. k  e.  A  C  e.  CC  ->  [_ m  /  k ]_ C  e.  CC )
)
167, 10, 15sylc 62 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  A )  ->  [_ m  /  k ]_ C  e.  CC )
17 0cnd 8135 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  -.  m  e.  A )  ->  0  e.  CC )
18 eleq1w 2290 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  e.  A  <->  m  e.  A ) )
1918dcbid 843 . . . . . . . 8  |-  ( j  =  m  ->  (DECID  j  e.  A  <-> DECID  m  e.  A )
)
20 isumss.adc . . . . . . . . 9  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
2219, 21, 6rspcdva 2912 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  -> DECID  m  e.  A
)
2316, 17, 22ifcldadc 3632 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
24 nfcv 2372 . . . . . . 7  |-  F/_ k
m
25 nfv 1574 . . . . . . . 8  |-  F/ k  m  e.  A
26 nfcv 2372 . . . . . . . 8  |-  F/_ k
0
2725, 11, 26nfif 3631 . . . . . . 7  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
28 eleq1w 2290 . . . . . . . 8  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
2928, 13ifbieq1d 3625 . . . . . . 7  |-  ( k  =  m  ->  if ( k  e.  A ,  C ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
30 eqid 2229 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  |->  if ( k  e.  A ,  C ,  0 ) )  =  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) )
3124, 27, 29, 30fvmptf 5726 . . . . . 6  |-  ( ( m  e.  ( ZZ>= `  M )  /\  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )  -> 
( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
326, 23, 31syl2anc 411 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
33 eqid 2229 . . . . . . . 8  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
3433fvmpts 5711 . . . . . . 7  |-  ( ( m  e.  A  /\  [_ m  /  k ]_ C  e.  CC )  ->  ( ( k  e.  A  |->  C ) `  m )  =  [_ m  /  k ]_ C
)
357, 16, 34syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  =  [_ m  /  k ]_ C
)
3635, 22ifeq1dadc 3633 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  A , 
( ( k  e.  A  |->  C ) `  m ) ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
3732, 36eqtr4d 2265 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m
) ,  0 ) )
388fmpttd 5789 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  C ) : A --> CC )
3938ffvelcdmda 5769 . . . 4  |-  ( (
ph  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  e.  CC )
401, 2, 5, 37, 20, 39zsumdc 11890 . . 3  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) ) ) )
41 dfss1 3408 . . . . . . . . . 10  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )
423, 41sylib 122 . . . . . . . . 9  |-  ( ph  ->  ( B  i^i  A
)  =  A )
4342eleq2d 2299 . . . . . . . 8  |-  ( ph  ->  ( m  e.  ( B  i^i  A )  <-> 
m  e.  A ) )
44 elin 3387 . . . . . . . 8  |-  ( m  e.  ( B  i^i  A )  <->  ( m  e.  B  /\  m  e.  A ) )
4543, 44bitr3di 195 . . . . . . 7  |-  ( ph  ->  ( m  e.  A  <->  ( m  e.  B  /\  m  e.  A )
) )
4645adantr 276 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( m  e.  A  <->  ( m  e.  B  /\  m  e.  A ) ) )
4746ifbid 3624 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  if ( ( m  e.  B  /\  m  e.  A ) ,  [_ m  /  k ]_ C ,  0 ) )
48 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  m  e.  B )
4916adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  [_ m  / 
k ]_ C  e.  CC )
50 eqid 2229 . . . . . . . . . . 11  |-  ( k  e.  B  |->  C )  =  ( k  e.  B  |->  C )
5150fvmpts 5711 . . . . . . . . . 10  |-  ( ( m  e.  B  /\  [_ m  /  k ]_ C  e.  CC )  ->  ( ( k  e.  B  |->  C ) `  m )  =  [_ m  /  k ]_ C
)
5248, 49, 51syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  ( (
k  e.  B  |->  C ) `  m )  =  [_ m  / 
k ]_ C )
53 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  m  e.  A )
5453iftrued 3609 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  [_ m  / 
k ]_ C )
5552, 54eqtr4d 2265 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  m  e.  A
)  ->  ( (
k  e.  B  |->  C ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
56 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  m  e.  B )
57 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  -.  m  e.  A )
5856, 57eldifd 3207 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  m  e.  ( B  \  A ) )
59 sumss.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
6059ralrimiva 2603 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  ( B  \  A ) C  =  0 )
6160ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  A. k  e.  ( B  \  A
) C  =  0 )
6211nfeq1 2382 . . . . . . . . . . 11  |-  F/ k
[_ m  /  k ]_ C  =  0
6313eqeq1d 2238 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( C  =  0  <->  [_ m  / 
k ]_ C  =  0 ) )
6462, 63rspc 2901 . . . . . . . . . 10  |-  ( m  e.  ( B  \  A )  ->  ( A. k  e.  ( B  \  A ) C  =  0  ->  [_ m  /  k ]_ C  =  0 ) )
6558, 61, 64sylc 62 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  [_ m  / 
k ]_ C  =  0 )
66 0cnd 8135 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  0  e.  CC )
6765, 66eqeltrd 2306 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  [_ m  / 
k ]_ C  e.  CC )
6856, 67, 51syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  ( (
k  e.  B  |->  C ) `  m )  =  [_ m  / 
k ]_ C )
6957iffalsed 3612 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
7065, 68, 693eqtr4d 2272 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  M ) )  /\  m  e.  B )  /\  -.  m  e.  A
)  ->  ( (
k  e.  B  |->  C ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
7122adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  B )  -> DECID  m  e.  A
)
72 exmiddc 841 . . . . . . . . 9  |-  (DECID  m  e.  A  ->  ( m  e.  A  \/  -.  m  e.  A )
)
7371, 72syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  B )  ->  (
m  e.  A  \/  -.  m  e.  A
) )
7455, 70, 73mpjaodan 803 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  M )
)  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
75 eleq1w 2290 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  e.  B  <->  m  e.  B ) )
7675dcbid 843 . . . . . . . 8  |-  ( j  =  m  ->  (DECID  j  e.  B  <-> DECID  m  e.  B )
)
77 isumss.bdc . . . . . . . . 9  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )
7877adantr 276 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )
7976, 78, 6rspcdva 2912 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  -> DECID  m  e.  B
)
8074, 79ifeq1dadc 3633 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  B , 
( ( k  e.  B  |->  C ) `  m ) ,  0 )  =  if ( m  e.  B ,  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) ,  0 ) )
81 ifandc 3643 . . . . . . 7  |-  (DECID  m  e.  B  ->  if (
( m  e.  B  /\  m  e.  A
) ,  [_ m  /  k ]_ C ,  0 )  =  if ( m  e.  B ,  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) ,  0 ) )
8279, 81syl 14 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
( m  e.  B  /\  m  e.  A
) ,  [_ m  /  k ]_ C ,  0 )  =  if ( m  e.  B ,  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) ,  0 ) )
8380, 82eqtr4d 2265 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  B , 
( ( k  e.  B  |->  C ) `  m ) ,  0 )  =  if ( ( m  e.  B  /\  m  e.  A
) ,  [_ m  /  k ]_ C ,  0 ) )
8447, 32, 833eqtr4d 2272 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) )
858adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B )  /\  k  e.  A )  ->  C  e.  CC )
86 simpll 527 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  ph )
87 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  k  e.  B )
88 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  -.  k  e.  A
)
8987, 88eldifd 3207 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  k  e.  ( B 
\  A ) )
9086, 89, 59syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  C  =  0 )
91 0cnd 8135 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  0  e.  CC )
9290, 91eqeltrd 2306 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  C  e.  CC )
93 eleq1w 2290 . . . . . . . . . 10  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
9493dcbid 843 . . . . . . . . 9  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
9520adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
964sselda 3224 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  ( ZZ>= `  M )
)
9794, 95, 96rspcdva 2912 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  -> DECID  k  e.  A
)
98 exmiddc 841 . . . . . . . 8  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
9997, 98syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  \/  -.  k  e.  A
) )
10085, 92, 99mpjaodan 803 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
101100fmpttd 5789 . . . . 5  |-  ( ph  ->  ( k  e.  B  |->  C ) : B --> CC )
102101ffvelcdmda 5769 . . . 4  |-  ( (
ph  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  e.  CC )
1031, 2, 4, 84, 77, 102zsumdc 11890 . . 3  |-  ( ph  -> 
sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) ) ) )
10440, 103eqtr4d 2265 . 2  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m ) )
105 sumfct 11880 . . 3  |-  ( A. k  e.  A  C  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `
 m )  = 
sum_ k  e.  A  C )
1069, 105syl 14 . 2  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
)
107100ralrimiva 2603 . . 3  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
108 sumfct 11880 . . 3  |-  ( A. k  e.  B  C  e.  CC  ->  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `
 m )  = 
sum_ k  e.  B  C )
109107, 108syl 14 . 2  |-  ( ph  -> 
sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m )  =  sum_ k  e.  B  C
)
110104, 106, 1093eqtr3d 2270 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   [_csb 3124    \ cdif 3194    i^i cin 3196    C_ wss 3197   ifcif 3602    |-> cmpt 4144   ` cfv 5317   CCcc 7993   0cc0 7995    + caddc 7998   ZZcz 9442   ZZ>=cuz 9718    seqcseq 10664    ~~> cli 11784   sum_csu 11859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860
This theorem is referenced by:  fisumss  11898  isumss2  11899  binomlem  11989
  Copyright terms: Public domain W3C validator