| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isumss | Unicode version | ||
| Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| sumss.1 | 
 | 
| sumss.2 | 
 | 
| sumss.3 | 
 | 
| isumss.adc | 
 | 
| isumss.m | 
 | 
| sumss.4 | 
 | 
| isumss.bdc | 
 | 
| Ref | Expression | 
|---|---|
| isumss | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. . . 4
 | |
| 2 | isumss.m | 
. . . 4
 | |
| 3 | sumss.1 | 
. . . . 5
 | |
| 4 | sumss.4 | 
. . . . 5
 | |
| 5 | 3, 4 | sstrd 3193 | 
. . . 4
 | 
| 6 | simpr 110 | 
. . . . . 6
 | |
| 7 | simpr 110 | 
. . . . . . . 8
 | |
| 8 | sumss.2 | 
. . . . . . . . . 10
 | |
| 9 | 8 | ralrimiva 2570 | 
. . . . . . . . 9
 | 
| 10 | 9 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 11 | nfcsb1v 3117 | 
. . . . . . . . . 10
 | |
| 12 | 11 | nfel1 2350 | 
. . . . . . . . 9
 | 
| 13 | csbeq1a 3093 | 
. . . . . . . . . 10
 | |
| 14 | 13 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 15 | 12, 14 | rspc 2862 | 
. . . . . . . 8
 | 
| 16 | 7, 10, 15 | sylc 62 | 
. . . . . . 7
 | 
| 17 | 0cnd 8019 | 
. . . . . . 7
 | |
| 18 | eleq1w 2257 | 
. . . . . . . . 9
 | |
| 19 | 18 | dcbid 839 | 
. . . . . . . 8
 | 
| 20 | isumss.adc | 
. . . . . . . . 9
 | |
| 21 | 20 | adantr 276 | 
. . . . . . . 8
 | 
| 22 | 19, 21, 6 | rspcdva 2873 | 
. . . . . . 7
 | 
| 23 | 16, 17, 22 | ifcldadc 3590 | 
. . . . . 6
 | 
| 24 | nfcv 2339 | 
. . . . . . 7
 | |
| 25 | nfv 1542 | 
. . . . . . . 8
 | |
| 26 | nfcv 2339 | 
. . . . . . . 8
 | |
| 27 | 25, 11, 26 | nfif 3589 | 
. . . . . . 7
 | 
| 28 | eleq1w 2257 | 
. . . . . . . 8
 | |
| 29 | 28, 13 | ifbieq1d 3583 | 
. . . . . . 7
 | 
| 30 | eqid 2196 | 
. . . . . . 7
 | |
| 31 | 24, 27, 29, 30 | fvmptf 5654 | 
. . . . . 6
 | 
| 32 | 6, 23, 31 | syl2anc 411 | 
. . . . 5
 | 
| 33 | eqid 2196 | 
. . . . . . . 8
 | |
| 34 | 33 | fvmpts 5639 | 
. . . . . . 7
 | 
| 35 | 7, 16, 34 | syl2anc 411 | 
. . . . . 6
 | 
| 36 | 35, 22 | ifeq1dadc 3591 | 
. . . . 5
 | 
| 37 | 32, 36 | eqtr4d 2232 | 
. . . 4
 | 
| 38 | 8 | fmpttd 5717 | 
. . . . 5
 | 
| 39 | 38 | ffvelcdmda 5697 | 
. . . 4
 | 
| 40 | 1, 2, 5, 37, 20, 39 | zsumdc 11549 | 
. . 3
 | 
| 41 | dfss1 3367 | 
. . . . . . . . . 10
 | |
| 42 | 3, 41 | sylib 122 | 
. . . . . . . . 9
 | 
| 43 | 42 | eleq2d 2266 | 
. . . . . . . 8
 | 
| 44 | elin 3346 | 
. . . . . . . 8
 | |
| 45 | 43, 44 | bitr3di 195 | 
. . . . . . 7
 | 
| 46 | 45 | adantr 276 | 
. . . . . 6
 | 
| 47 | 46 | ifbid 3582 | 
. . . . 5
 | 
| 48 | simplr 528 | 
. . . . . . . . . 10
 | |
| 49 | 16 | adantlr 477 | 
. . . . . . . . . 10
 | 
| 50 | eqid 2196 | 
. . . . . . . . . . 11
 | |
| 51 | 50 | fvmpts 5639 | 
. . . . . . . . . 10
 | 
| 52 | 48, 49, 51 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 53 | simpr 110 | 
. . . . . . . . . 10
 | |
| 54 | 53 | iftrued 3568 | 
. . . . . . . . 9
 | 
| 55 | 52, 54 | eqtr4d 2232 | 
. . . . . . . 8
 | 
| 56 | simplr 528 | 
. . . . . . . . . . 11
 | |
| 57 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 58 | 56, 57 | eldifd 3167 | 
. . . . . . . . . 10
 | 
| 59 | sumss.3 | 
. . . . . . . . . . . 12
 | |
| 60 | 59 | ralrimiva 2570 | 
. . . . . . . . . . 11
 | 
| 61 | 60 | ad3antrrr 492 | 
. . . . . . . . . 10
 | 
| 62 | 11 | nfeq1 2349 | 
. . . . . . . . . . 11
 | 
| 63 | 13 | eqeq1d 2205 | 
. . . . . . . . . . 11
 | 
| 64 | 62, 63 | rspc 2862 | 
. . . . . . . . . 10
 | 
| 65 | 58, 61, 64 | sylc 62 | 
. . . . . . . . 9
 | 
| 66 | 0cnd 8019 | 
. . . . . . . . . . 11
 | |
| 67 | 65, 66 | eqeltrd 2273 | 
. . . . . . . . . 10
 | 
| 68 | 56, 67, 51 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 69 | 57 | iffalsed 3571 | 
. . . . . . . . 9
 | 
| 70 | 65, 68, 69 | 3eqtr4d 2239 | 
. . . . . . . 8
 | 
| 71 | 22 | adantr 276 | 
. . . . . . . . 9
 | 
| 72 | exmiddc 837 | 
. . . . . . . . 9
 | |
| 73 | 71, 72 | syl 14 | 
. . . . . . . 8
 | 
| 74 | 55, 70, 73 | mpjaodan 799 | 
. . . . . . 7
 | 
| 75 | eleq1w 2257 | 
. . . . . . . . 9
 | |
| 76 | 75 | dcbid 839 | 
. . . . . . . 8
 | 
| 77 | isumss.bdc | 
. . . . . . . . 9
 | |
| 78 | 77 | adantr 276 | 
. . . . . . . 8
 | 
| 79 | 76, 78, 6 | rspcdva 2873 | 
. . . . . . 7
 | 
| 80 | 74, 79 | ifeq1dadc 3591 | 
. . . . . 6
 | 
| 81 | ifandc 3599 | 
. . . . . . 7
 | |
| 82 | 79, 81 | syl 14 | 
. . . . . 6
 | 
| 83 | 80, 82 | eqtr4d 2232 | 
. . . . 5
 | 
| 84 | 47, 32, 83 | 3eqtr4d 2239 | 
. . . 4
 | 
| 85 | 8 | adantlr 477 | 
. . . . . . 7
 | 
| 86 | simpll 527 | 
. . . . . . . . 9
 | |
| 87 | simplr 528 | 
. . . . . . . . . 10
 | |
| 88 | simpr 110 | 
. . . . . . . . . 10
 | |
| 89 | 87, 88 | eldifd 3167 | 
. . . . . . . . 9
 | 
| 90 | 86, 89, 59 | syl2anc 411 | 
. . . . . . . 8
 | 
| 91 | 0cnd 8019 | 
. . . . . . . 8
 | |
| 92 | 90, 91 | eqeltrd 2273 | 
. . . . . . 7
 | 
| 93 | eleq1w 2257 | 
. . . . . . . . . 10
 | |
| 94 | 93 | dcbid 839 | 
. . . . . . . . 9
 | 
| 95 | 20 | adantr 276 | 
. . . . . . . . 9
 | 
| 96 | 4 | sselda 3183 | 
. . . . . . . . 9
 | 
| 97 | 94, 95, 96 | rspcdva 2873 | 
. . . . . . . 8
 | 
| 98 | exmiddc 837 | 
. . . . . . . 8
 | |
| 99 | 97, 98 | syl 14 | 
. . . . . . 7
 | 
| 100 | 85, 92, 99 | mpjaodan 799 | 
. . . . . 6
 | 
| 101 | 100 | fmpttd 5717 | 
. . . . 5
 | 
| 102 | 101 | ffvelcdmda 5697 | 
. . . 4
 | 
| 103 | 1, 2, 4, 84, 77, 102 | zsumdc 11549 | 
. . 3
 | 
| 104 | 40, 103 | eqtr4d 2232 | 
. 2
 | 
| 105 | sumfct 11539 | 
. . 3
 | |
| 106 | 9, 105 | syl 14 | 
. 2
 | 
| 107 | 100 | ralrimiva 2570 | 
. . 3
 | 
| 108 | sumfct 11539 | 
. . 3
 | |
| 109 | 107, 108 | syl 14 | 
. 2
 | 
| 110 | 104, 106, 109 | 3eqtr3d 2237 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 | 
| This theorem is referenced by: fisumss 11557 isumss2 11558 binomlem 11648 | 
| Copyright terms: Public domain | W3C validator |