ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftrued Unicode version

Theorem iftrued 3527
Description: Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
iftrued.1  |-  ( ph  ->  ch )
Assertion
Ref Expression
iftrued  |-  ( ph  ->  if ( ch ,  A ,  B )  =  A )

Proof of Theorem iftrued
StepHypRef Expression
1 iftrued.1 . 2  |-  ( ph  ->  ch )
2 iftrue 3525 . 2  |-  ( ch 
->  if ( ch ,  A ,  B )  =  A )
31, 2syl 14 1  |-  ( ph  ->  if ( ch ,  A ,  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-if 3521
This theorem is referenced by:  eqifdc  3554  mposnif  5936  fimax2gtrilemstep  6866  updjudhcoinlf  7045  omp1eomlem  7059  difinfsnlem  7064  ctssdclemn0  7075  ctssdc  7078  enumctlemm  7079  nnnninfeq  7092  nninfisollemne  7095  fodju0  7111  iseqf1olemnab  10423  iseqf1olemab  10424  iseqf1olemqk  10429  iseqf1olemfvp  10432  seq3f1olemqsumkj  10433  seq3f1olemqsum  10435  seq3f1oleml  10438  seq3f1o  10439  fser0const  10451  expnnval  10458  2zsupmax  11167  2zinfmin  11184  xrmaxifle  11187  xrmaxiflemab  11188  xrmaxiflemlub  11189  xrmaxiflemcom  11190  summodclem3  11321  summodclem2a  11322  isum  11326  fsum3  11328  isumss  11332  fsumcl2lem  11339  fsumadd  11347  fsummulc2  11389  cvgratz  11473  prodmodclem3  11516  prodmodclem2a  11517  fprodseq  11524  prod1dc  11527  fprodmul  11532  ef0lem  11601  gcdval  11892  pcmpt  12273  pcmpt2  12274  ennnfonelemss  12343  ennnfonelemkh  12345  ennnfonelemhf1o  12346  ressid2  12454  lgsdir2  13574  lgsne0  13579  bj-charfun  13689  bj-charfundc  13690  subctctexmid  13881  nninfsellemeq  13894  nninfsellemeqinf  13896  nninffeq  13900  dcapnconst  13939
  Copyright terms: Public domain W3C validator