Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifeq1dadc | Unicode version |
Description: Conditional equality. (Contributed by Jim Kingdon, 1-Jan-2022.) |
Ref | Expression |
---|---|
ifeq1dadc.1 | |
ifeq1dadc.dc | DECID |
Ref | Expression |
---|---|
ifeq1dadc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1dadc.1 | . . 3 | |
2 | 1 | ifeq1d 3549 | . 2 |
3 | iffalse 3540 | . . . 4 | |
4 | iffalse 3540 | . . . 4 | |
5 | 3, 4 | eqtr4d 2211 | . . 3 |
6 | 5 | adantl 277 | . 2 |
7 | ifeq1dadc.dc | . . 3 DECID | |
8 | exmiddc 836 | . . 3 DECID | |
9 | 7, 8 | syl 14 | . 2 |
10 | 2, 6, 9 | mpjaodan 798 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wo 708 DECID wdc 834 wceq 1353 cif 3532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-un 3131 df-if 3533 |
This theorem is referenced by: sumeq2 11333 isumss 11365 prodeq2 11531 lgsval2lem 13980 lgsval4lem 13981 lgsneg 13994 lgsmod 13996 lgsdilem2 14006 |
Copyright terms: Public domain | W3C validator |