ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1dadc Unicode version

Theorem ifeq1dadc 3591
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifeq1dadc.1  |-  ( (
ph  /\  ps )  ->  A  =  B )
ifeq1dadc.dc  |-  ( ph  -> DECID  ps )
Assertion
Ref Expression
ifeq1dadc  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)

Proof of Theorem ifeq1dadc
StepHypRef Expression
1 ifeq1dadc.1 . . 3  |-  ( (
ph  /\  ps )  ->  A  =  B )
21ifeq1d 3578 . 2  |-  ( (
ph  /\  ps )  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
3 iffalse 3569 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  A ,  C
)  =  C )
4 iffalse 3569 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  B ,  C
)  =  C )
53, 4eqtr4d 2232 . . 3  |-  ( -. 
ps  ->  if ( ps ,  A ,  C
)  =  if ( ps ,  B ,  C ) )
65adantl 277 . 2  |-  ( (
ph  /\  -.  ps )  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
7 ifeq1dadc.dc . . 3  |-  ( ph  -> DECID  ps )
8 exmiddc 837 . . 3  |-  (DECID  ps  ->  ( ps  \/  -.  ps ) )
97, 8syl 14 . 2  |-  ( ph  ->  ( ps  \/  -.  ps ) )
102, 6, 9mpjaodan 799 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364   ifcif 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-un 3161  df-if 3562
This theorem is referenced by:  sumeq2  11524  isumss  11556  prodeq2  11722  lgsval2lem  15251  lgsval4lem  15252  lgsneg  15265  lgsmod  15267  lgsdilem2  15277
  Copyright terms: Public domain W3C validator