ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1dadc Unicode version

Theorem ifeq1dadc 3610
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifeq1dadc.1  |-  ( (
ph  /\  ps )  ->  A  =  B )
ifeq1dadc.dc  |-  ( ph  -> DECID  ps )
Assertion
Ref Expression
ifeq1dadc  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)

Proof of Theorem ifeq1dadc
StepHypRef Expression
1 ifeq1dadc.1 . . 3  |-  ( (
ph  /\  ps )  ->  A  =  B )
21ifeq1d 3597 . 2  |-  ( (
ph  /\  ps )  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
3 iffalse 3587 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  A ,  C
)  =  C )
4 iffalse 3587 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  B ,  C
)  =  C )
53, 4eqtr4d 2243 . . 3  |-  ( -. 
ps  ->  if ( ps ,  A ,  C
)  =  if ( ps ,  B ,  C ) )
65adantl 277 . 2  |-  ( (
ph  /\  -.  ps )  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
7 ifeq1dadc.dc . . 3  |-  ( ph  -> DECID  ps )
8 exmiddc 838 . . 3  |-  (DECID  ps  ->  ( ps  \/  -.  ps ) )
97, 8syl 14 . 2  |-  ( ph  ->  ( ps  \/  -.  ps ) )
102, 6, 9mpjaodan 800 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373   ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-un 3178  df-if 3580
This theorem is referenced by:  sumeq2  11785  isumss  11817  prodeq2  11983  lgsval2lem  15602  lgsval4lem  15603  lgsneg  15616  lgsmod  15618  lgsdilem2  15628
  Copyright terms: Public domain W3C validator