ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1dadc Unicode version

Theorem ifeq1dadc 3562
Description: Conditional equality. (Contributed by Jim Kingdon, 1-Jan-2022.)
Hypotheses
Ref Expression
ifeq1dadc.1  |-  ( (
ph  /\  ps )  ->  A  =  B )
ifeq1dadc.dc  |-  ( ph  -> DECID  ps )
Assertion
Ref Expression
ifeq1dadc  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)

Proof of Theorem ifeq1dadc
StepHypRef Expression
1 ifeq1dadc.1 . . 3  |-  ( (
ph  /\  ps )  ->  A  =  B )
21ifeq1d 3549 . 2  |-  ( (
ph  /\  ps )  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
3 iffalse 3540 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  A ,  C
)  =  C )
4 iffalse 3540 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  B ,  C
)  =  C )
53, 4eqtr4d 2211 . . 3  |-  ( -. 
ps  ->  if ( ps ,  A ,  C
)  =  if ( ps ,  B ,  C ) )
65adantl 277 . 2  |-  ( (
ph  /\  -.  ps )  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
7 ifeq1dadc.dc . . 3  |-  ( ph  -> DECID  ps )
8 exmiddc 836 . . 3  |-  (DECID  ps  ->  ( ps  \/  -.  ps ) )
97, 8syl 14 . 2  |-  ( ph  ->  ( ps  \/  -.  ps ) )
102, 6, 9mpjaodan 798 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353   ifcif 3532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rab 2462  df-v 2737  df-un 3131  df-if 3533
This theorem is referenced by:  sumeq2  11333  isumss  11365  prodeq2  11531  lgsval2lem  13980  lgsval4lem  13981  lgsneg  13994  lgsmod  13996  lgsdilem2  14006
  Copyright terms: Public domain W3C validator