ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1dadc Unicode version

Theorem ifeq1dadc 3633
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifeq1dadc.1  |-  ( (
ph  /\  ps )  ->  A  =  B )
ifeq1dadc.dc  |-  ( ph  -> DECID  ps )
Assertion
Ref Expression
ifeq1dadc  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)

Proof of Theorem ifeq1dadc
StepHypRef Expression
1 ifeq1dadc.1 . . 3  |-  ( (
ph  /\  ps )  ->  A  =  B )
21ifeq1d 3620 . 2  |-  ( (
ph  /\  ps )  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
3 iffalse 3610 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  A ,  C
)  =  C )
4 iffalse 3610 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  B ,  C
)  =  C )
53, 4eqtr4d 2265 . . 3  |-  ( -. 
ps  ->  if ( ps ,  A ,  C
)  =  if ( ps ,  B ,  C ) )
65adantl 277 . 2  |-  ( (
ph  /\  -.  ps )  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
7 ifeq1dadc.dc . . 3  |-  ( ph  -> DECID  ps )
8 exmiddc 841 . . 3  |-  (DECID  ps  ->  ( ps  \/  -.  ps ) )
97, 8syl 14 . 2  |-  ( ph  ->  ( ps  \/  -.  ps ) )
102, 6, 9mpjaodan 803 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-if 3603
This theorem is referenced by:  sumeq2  11865  isumss  11897  prodeq2  12063  lgsval2lem  15683  lgsval4lem  15684  lgsneg  15697  lgsmod  15699  lgsdilem2  15709
  Copyright terms: Public domain W3C validator