ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq2dadc GIF version

Theorem ifeq2dadc 3634
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifeq2da.1 ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵)
ifeq2dadc.dc (𝜑DECID 𝜓)
Assertion
Ref Expression
ifeq2dadc (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))

Proof of Theorem ifeq2dadc
StepHypRef Expression
1 simpr 110 . . . 4 ((𝜑𝜓) → 𝜓)
21iftrued 3609 . . 3 ((𝜑𝜓) → if(𝜓, 𝐶, 𝐴) = 𝐶)
31iftrued 3609 . . 3 ((𝜑𝜓) → if(𝜓, 𝐶, 𝐵) = 𝐶)
42, 3eqtr4d 2265 . 2 ((𝜑𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
5 ifeq2da.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵)
65ifeq2d 3621 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
7 ifeq2dadc.dc . . 3 (𝜑DECID 𝜓)
8 exmiddc 841 . . 3 (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓))
97, 8syl 14 . 2 (𝜑 → (𝜓 ∨ ¬ 𝜓))
104, 6, 9mpjaodan 803 1 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-if 3603
This theorem is referenced by:  subgmulg  13720
  Copyright terms: Public domain W3C validator