ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq2d Unicode version

Theorem ifeq2d 3523
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
Hypothesis
Ref Expression
ifeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ifeq2d  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
)

Proof of Theorem ifeq2d
StepHypRef Expression
1 ifeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ifeq2 3509 . 2  |-  ( A  =  B  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B ) )
31, 2syl 14 1  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335   ifcif 3505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rab 2444  df-v 2714  df-un 3106  df-if 3506
This theorem is referenced by:  ifeq12d  3524  ifbieq2d  3529  exp3val  10421  xrmaxiflemcom  11146  peano4nninf  13578  peano3nninf  13579
  Copyright terms: Public domain W3C validator