ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifexg Unicode version

Theorem ifexg 4536
Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011.) (Proof shortened by BJ, 1-Sep-2022.)
Assertion
Ref Expression
ifexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  _V )

Proof of Theorem ifexg
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
2 simpr 110 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  W )
31, 2ifexd 4535 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2177   _Vcvv 2773   ifcif 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-uni 3853
This theorem is referenced by:  ifex  4537
  Copyright terms: Public domain W3C validator