ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifexd Unicode version

Theorem ifexd 4552
Description: Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.)
Hypotheses
Ref Expression
ifexd.1  |-  ( ph  ->  A  e.  V )
ifexd.2  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
ifexd  |-  ( ph  ->  if ( ps ,  A ,  B )  e.  _V )

Proof of Theorem ifexd
StepHypRef Expression
1 ifexd.1 . . 3  |-  ( ph  ->  A  e.  V )
2 ifexd.2 . . 3  |-  ( ph  ->  B  e.  W )
31, 2ifelpwund 4550 . 2  |-  ( ph  ->  if ( ps ,  A ,  B )  e.  ~P ( A  u.  B ) )
43elexd 2793 1  |-  ( ph  ->  if ( ps ,  A ,  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2180   _Vcvv 2779    u. cun 3175   ifcif 3582   ~Pcpw 3629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-rab 2497  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-uni 3868
This theorem is referenced by:  ifexg  4553  ccatlen  11096  ccatvalfn  11102  swrdval  11146  pfxval  11172  fnpfx  11175  gsumfzval  13390  vtxvalg  15782  iedgvalg  15783  vtxex  15784  iedgex  15785  edgvalg  15825
  Copyright terms: Public domain W3C validator