Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifexd | Unicode version |
Description: Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifexd.1 | |
ifexd.2 |
Ref | Expression |
---|---|
ifexd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifexd.1 | . . 3 | |
2 | ifexd.2 | . . 3 | |
3 | 1, 2 | ifelpwund 4443 | . 2 |
4 | 3 | elexd 2725 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cvv 2712 cun 3100 cif 3505 cpw 3543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pr 4170 ax-un 4394 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-rab 2444 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3774 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |