ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifexd Unicode version

Theorem ifexd 4532
Description: Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.)
Hypotheses
Ref Expression
ifexd.1  |-  ( ph  ->  A  e.  V )
ifexd.2  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
ifexd  |-  ( ph  ->  if ( ps ,  A ,  B )  e.  _V )

Proof of Theorem ifexd
StepHypRef Expression
1 ifexd.1 . . 3  |-  ( ph  ->  A  e.  V )
2 ifexd.2 . . 3  |-  ( ph  ->  B  e.  W )
31, 2ifelpwund 4530 . 2  |-  ( ph  ->  if ( ps ,  A ,  B )  e.  ~P ( A  u.  B ) )
43elexd 2785 1  |-  ( ph  ->  if ( ps ,  A ,  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   _Vcvv 2772    u. cun 3164   ifcif 3571   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851
This theorem is referenced by:  ifexg  4533  ccatlen  11054  ccatvalfn  11060  swrdval  11104  pfxval  11130  gsumfzval  13256  vtxvalg  15648  iedgvalg  15649  edgvalg  15687
  Copyright terms: Public domain W3C validator