| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifexd | Unicode version | ||
| Description: Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| ifexd.1 |
|
| ifexd.2 |
|
| Ref | Expression |
|---|---|
| ifexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifexd.1 |
. . 3
| |
| 2 | ifexd.2 |
. . 3
| |
| 3 | 1, 2 | ifelpwund 4550 |
. 2
|
| 4 | 3 | elexd 2793 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-uni 3868 |
| This theorem is referenced by: ifexg 4553 ccatlen 11096 ccatvalfn 11102 swrdval 11146 pfxval 11172 fnpfx 11175 gsumfzval 13390 vtxvalg 15782 iedgvalg 15783 vtxex 15784 iedgex 15785 edgvalg 15825 |
| Copyright terms: Public domain | W3C validator |