ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnotdc GIF version

Theorem ifnotdc 3573
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.)
Assertion
Ref Expression
ifnotdc (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))

Proof of Theorem ifnotdc
StepHypRef Expression
1 df-dc 835 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 notnot 629 . . . . 5 (𝜑 → ¬ ¬ 𝜑)
32iffalsed 3546 . . . 4 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵)
4 iftrue 3541 . . . 4 (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵)
53, 4eqtr4d 2213 . . 3 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
6 iftrue 3541 . . . 4 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴)
7 iffalse 3544 . . . 4 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴)
86, 7eqtr4d 2213 . . 3 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
95, 8jaoi 716 . 2 ((𝜑 ∨ ¬ 𝜑) → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
101, 9sylbi 121 1 (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 708  DECID wdc 834   = wceq 1353  ifcif 3536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-if 3537
This theorem is referenced by:  lgsneg  14510  lgsdilem  14513
  Copyright terms: Public domain W3C validator