ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnotdc GIF version

Theorem ifnotdc 3555
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.)
Assertion
Ref Expression
ifnotdc (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))

Proof of Theorem ifnotdc
StepHypRef Expression
1 df-dc 825 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 notnot 619 . . . . 5 (𝜑 → ¬ ¬ 𝜑)
32iffalsed 3529 . . . 4 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵)
4 iftrue 3524 . . . 4 (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵)
53, 4eqtr4d 2201 . . 3 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
6 iftrue 3524 . . . 4 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴)
7 iffalse 3527 . . . 4 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴)
86, 7eqtr4d 2201 . . 3 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
95, 8jaoi 706 . 2 ((𝜑 ∨ ¬ 𝜑) → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
101, 9sylbi 120 1 (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  DECID wdc 824   = wceq 1343  ifcif 3519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-if 3520
This theorem is referenced by:  lgsneg  13525  lgsdilem  13528
  Copyright terms: Public domain W3C validator