![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifnotdc | GIF version |
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.) |
Ref | Expression |
---|---|
ifnotdc | ⊢ (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 836 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
2 | notnot 630 | . . . . 5 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
3 | 2 | iffalsed 3559 | . . . 4 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵) |
4 | iftrue 3554 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵) | |
5 | 3, 4 | eqtr4d 2225 | . . 3 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
6 | iftrue 3554 | . . . 4 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴) | |
7 | iffalse 3557 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴) | |
8 | 6, 7 | eqtr4d 2225 | . . 3 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
9 | 5, 8 | jaoi 717 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
10 | 1, 9 | sylbi 121 | 1 ⊢ (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1364 ifcif 3549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-if 3550 |
This theorem is referenced by: lgsneg 14862 lgsdilem 14865 |
Copyright terms: Public domain | W3C validator |