ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnotdc GIF version

Theorem ifnotdc 3562
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.)
Assertion
Ref Expression
ifnotdc (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))

Proof of Theorem ifnotdc
StepHypRef Expression
1 df-dc 830 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 notnot 624 . . . . 5 (𝜑 → ¬ ¬ 𝜑)
32iffalsed 3536 . . . 4 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵)
4 iftrue 3531 . . . 4 (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵)
53, 4eqtr4d 2206 . . 3 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
6 iftrue 3531 . . . 4 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴)
7 iffalse 3534 . . . 4 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴)
86, 7eqtr4d 2206 . . 3 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
95, 8jaoi 711 . 2 ((𝜑 ∨ ¬ 𝜑) → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
101, 9sylbi 120 1 (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 703  DECID wdc 829   = wceq 1348  ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-if 3527
This theorem is referenced by:  lgsneg  13719  lgsdilem  13722
  Copyright terms: Public domain W3C validator