ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnotdc GIF version

Theorem ifnotdc 3611
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.)
Assertion
Ref Expression
ifnotdc (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))

Proof of Theorem ifnotdc
StepHypRef Expression
1 df-dc 837 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 notnot 630 . . . . 5 (𝜑 → ¬ ¬ 𝜑)
32iffalsed 3583 . . . 4 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵)
4 iftrue 3578 . . . 4 (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵)
53, 4eqtr4d 2242 . . 3 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
6 iftrue 3578 . . . 4 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴)
7 iffalse 3581 . . . 4 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴)
86, 7eqtr4d 2242 . . 3 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
95, 8jaoi 718 . 2 ((𝜑 ∨ ¬ 𝜑) → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
101, 9sylbi 121 1 (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 710  DECID wdc 836   = wceq 1373  ifcif 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-if 3574
This theorem is referenced by:  lgsneg  15551  lgsdilem  15554
  Copyright terms: Public domain W3C validator