| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifnotdc | GIF version | ||
| Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.) |
| Ref | Expression |
|---|---|
| ifnotdc | ⊢ (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 840 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | notnot 632 | . . . . 5 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 3 | 2 | iffalsed 3612 | . . . 4 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵) |
| 4 | iftrue 3607 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵) | |
| 5 | 3, 4 | eqtr4d 2265 | . . 3 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
| 6 | iftrue 3607 | . . . 4 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴) | |
| 7 | iffalse 3610 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴) | |
| 8 | 6, 7 | eqtr4d 2265 | . . 3 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
| 9 | 5, 8 | jaoi 721 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
| 10 | 1, 9 | sylbi 121 | 1 ⊢ (DECID 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 DECID wdc 839 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: lgsneg 15688 lgsdilem 15691 |
| Copyright terms: Public domain | W3C validator |