| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldcd | Unicode version | ||
| Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
| Ref | Expression |
|---|---|
| ifcldcd.a |
|
| ifcldcd.b |
|
| ifcldcd.dc |
|
| Ref | Expression |
|---|---|
| ifcldcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3584 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | ifcldcd.a |
. . . 4
| |
| 4 | 3 | adantr 276 |
. . 3
|
| 5 | 2, 4 | eqeltrd 2284 |
. 2
|
| 6 | iffalse 3587 |
. . . 4
| |
| 7 | 6 | adantl 277 |
. . 3
|
| 8 | ifcldcd.b |
. . . 4
| |
| 9 | 8 | adantr 276 |
. . 3
|
| 10 | 7, 9 | eqeltrd 2284 |
. 2
|
| 11 | ifcldcd.dc |
. . 3
| |
| 12 | df-dc 837 |
. . 3
| |
| 13 | 11, 12 | sylib 122 |
. 2
|
| 14 | 5, 10, 13 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-if 3580 |
| This theorem is referenced by: pw2f1odclem 6956 fimax2gtrilemstep 7023 nnnninf 7254 nnnninfeq 7256 fodjuf 7273 fodjum 7274 fodju0 7275 mkvprop 7286 nninfwlporlemd 7300 nninfwlporlem 7301 nninfwlpoimlemg 7303 nninfwlpoimlemginf 7304 xaddf 10001 xaddval 10002 nninfinf 10625 seqf1oglem1 10701 seqf1oglem2 10702 uzin2 11413 fsum3ser 11823 fsumsplit 11833 explecnv 11931 fprodsplitdc 12022 nninfctlemfo 12476 pcmpt2 12782 ennnfonelemp1 12892 opifismgmdc 13318 psr1clfi 14565 elply2 15322 ply1term 15330 plyaddlem1 15334 plyaddlem 15336 lgsval 15596 lgsfvalg 15597 lgsfcl2 15598 lgscllem 15599 lgsval2lem 15602 lgsneg 15616 lgsdilem 15619 lgsdir2 15625 lgsdir 15627 lgsdi 15629 lgsne0 15630 gausslemma2dlem1cl 15651 gausslemma2dlem4 15656 bj-charfundc 15943 2omap 16132 nnsf 16144 peano4nninf 16145 nninfsellemcl 16150 nninffeq 16159 dceqnconst 16201 dcapnconst 16202 |
| Copyright terms: Public domain | W3C validator |