| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldcd | Unicode version | ||
| Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
| Ref | Expression |
|---|---|
| ifcldcd.a |
|
| ifcldcd.b |
|
| ifcldcd.dc |
|
| Ref | Expression |
|---|---|
| ifcldcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3607 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | ifcldcd.a |
. . . 4
| |
| 4 | 3 | adantr 276 |
. . 3
|
| 5 | 2, 4 | eqeltrd 2306 |
. 2
|
| 6 | iffalse 3610 |
. . . 4
| |
| 7 | 6 | adantl 277 |
. . 3
|
| 8 | ifcldcd.b |
. . . 4
| |
| 9 | 8 | adantr 276 |
. . 3
|
| 10 | 7, 9 | eqeltrd 2306 |
. 2
|
| 11 | ifcldcd.dc |
. . 3
| |
| 12 | df-dc 840 |
. . 3
| |
| 13 | 11, 12 | sylib 122 |
. 2
|
| 14 | 5, 10, 13 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: pw2f1odclem 6995 fimax2gtrilemstep 7062 nnnninf 7293 nnnninfeq 7295 fodjuf 7312 fodjum 7313 fodju0 7314 mkvprop 7325 nninfwlporlemd 7339 nninfwlporlem 7340 nninfwlpoimlemg 7342 nninfwlpoimlemginf 7343 xaddf 10040 xaddval 10041 nninfinf 10665 seqf1oglem1 10741 seqf1oglem2 10742 uzin2 11498 fsum3ser 11908 fsumsplit 11918 explecnv 12016 fprodsplitdc 12107 nninfctlemfo 12561 pcmpt2 12867 ennnfonelemp1 12977 opifismgmdc 13404 psr1clfi 14652 elply2 15409 ply1term 15417 plyaddlem1 15421 plyaddlem 15423 lgsval 15683 lgsfvalg 15684 lgsfcl2 15685 lgscllem 15686 lgsval2lem 15689 lgsneg 15703 lgsdilem 15706 lgsdir2 15712 lgsdir 15714 lgsdi 15716 lgsne0 15717 gausslemma2dlem1cl 15738 gausslemma2dlem4 15743 bj-charfundc 16171 2omap 16359 nnsf 16371 peano4nninf 16372 nninfsellemcl 16377 nninffeq 16386 dceqnconst 16428 dcapnconst 16429 |
| Copyright terms: Public domain | W3C validator |