ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem Unicode version

Theorem lgsdilem 14431
Description: Lemma for lgsdi 14441 and lgsdir 14439: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdilem  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )

Proof of Theorem lgsdilem
StepHypRef Expression
1 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  B  =/=  0 )
21biantrud 304 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <_  B  <->  ( 0  <_  B  /\  B  =/=  0 ) ) )
3 0z 9264 . . . . . . . . . . 11  |-  0  e.  ZZ
4 simpl2 1001 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  ZZ )
54adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  B  e.  ZZ )
6 zltlen 9331 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  <  B  <->  ( 0  <_  B  /\  B  =/=  0 ) ) )
73, 5, 6sylancr 414 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <  B  <->  ( 0  <_  B  /\  B  =/=  0 ) ) )
8 simpl1 1000 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  ZZ )
98zred 9375 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  RR )
109adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  A  e.  RR )
1110renegcld 8337 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  -u A  e.  RR )
1211recnd 7986 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  -u A  e.  CC )
1312mul01d 8350 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( -u A  x.  0 )  =  0 )
1410recnd 7986 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  A  e.  CC )
154zred 9375 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  RR )
1615adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  B  e.  RR )
1716recnd 7986 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  B  e.  CC )
1814, 17mulneg1d 8368 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( -u A  x.  B
)  =  -u ( A  x.  B )
)
1913, 18breq12d 4017 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( ( -u A  x.  0 )  <  ( -u A  x.  B )  <->  0  <  -u ( A  x.  B )
) )
20 0red 7958 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
0  e.  RR )
219lt0neg1d 8472 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  <  0  <->  0  <  -u A ) )
2221biimpa 296 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
0  <  -u A )
23 ltmul2 8813 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  ( -u A  e.  RR  /\  0  <  -u A ) )  ->  ( 0  < 
B  <->  ( -u A  x.  0 )  <  ( -u A  x.  B ) ) )
2420, 16, 11, 22, 23syl112anc 1242 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <  B  <->  (
-u A  x.  0 )  <  ( -u A  x.  B )
) )
259, 15remulcld 7988 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  x.  B )  e.  RR )
2625adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( A  x.  B
)  e.  RR )
2726lt0neg1d 8472 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( ( A  x.  B )  <  0  <->  0  <  -u ( A  x.  B ) ) )
2819, 24, 273bitr4d 220 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <  B  <->  ( A  x.  B )  <  0 ) )
292, 7, 283bitr2rd 217 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( ( A  x.  B )  <  0  <->  0  <_  B ) )
30 0re 7957 . . . . . . . . . 10  |-  0  e.  RR
31 lenlt 8033 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
3230, 16, 31sylancr 414 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <_  B  <->  -.  B  <  0 ) )
3329, 32bitrd 188 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( ( A  x.  B )  <  0  <->  -.  B  <  0 ) )
3433ifbid 3556 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  if ( -.  B  <  0 ,  -u 1 ,  1 ) )
35 zdclt 9330 . . . . . . . . . . 11  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  <  0 )
363, 35mpan2 425 . . . . . . . . . 10  |-  ( B  e.  ZZ  -> DECID  B  <  0
)
37 oveq2 5883 . . . . . . . . . . . . 13  |-  ( if ( B  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  ( -u 1  x.  -u 1 ) )
38 neg1mulneg1e1 9131 . . . . . . . . . . . . 13  |-  ( -u
1  x.  -u 1
)  =  1
3937, 38eqtrdi 2226 . . . . . . . . . . . 12  |-  ( if ( B  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  1 )
40 oveq2 5883 . . . . . . . . . . . . 13  |-  ( if ( B  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  1 ) )
41 ax-1cn 7904 . . . . . . . . . . . . . 14  |-  1  e.  CC
4241mulm1i 8360 . . . . . . . . . . . . 13  |-  ( -u
1  x.  1 )  =  -u 1
4340, 42eqtrdi 2226 . . . . . . . . . . . 12  |-  ( if ( B  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  -u
1 )
4439, 43ifsbdc 3547 . . . . . . . . . . 11  |-  (DECID  B  <  0  ->  ( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  if ( B  <  0 ,  1 ,  -u 1 ) )
45 ifnotdc 3572 . . . . . . . . . . 11  |-  (DECID  B  <  0  ->  if ( -.  B  <  0 ,  -u 1 ,  1 )  =  if ( B  <  0 ,  1 ,  -u 1
) )
4644, 45eqtr4d 2213 . . . . . . . . . 10  |-  (DECID  B  <  0  ->  ( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  if ( -.  B  <  0 , 
-u 1 ,  1 ) )
4736, 46syl 14 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  ( -u 1  x.  if ( B  <  0 , 
-u 1 ,  1 ) )  =  if ( -.  B  <  0 ,  -u 1 ,  1 ) )
48473ad2ant2 1019 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u 1  x.  if ( B  <  0 , 
-u 1 ,  1 ) )  =  if ( -.  B  <  0 ,  -u 1 ,  1 ) )
4948ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  if ( -.  B  <  0 ,  -u 1 ,  1 ) )
5034, 49eqtr4d 2213 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  ( -u
1  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
51 iftrue 3540 . . . . . . . 8  |-  ( A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
5251adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
5352oveq1d 5890 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( B  <  0 ,  -u
1 ,  1 ) )  =  ( -u
1  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
5450, 53eqtr4d 2213 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
55 iffalse 3543 . . . . . . . 8  |-  ( -.  A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  1 )
5655adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  if ( A  <  0 ,  -u
1 ,  1 )  =  1 )
5756oveq1d 5890 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) )  =  ( 1  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
58 neg1cn 9024 . . . . . . . . 9  |-  -u 1  e.  CC
5958a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  -u 1  e.  CC )
6041a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  1  e.  CC )
614adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  B  e.  ZZ )
6261, 3, 35sylancl 413 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  -> DECID  B  <  0
)
6359, 60, 62ifcldcd 3571 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  if ( B  <  0 ,  -u
1 ,  1 )  e.  CC )
6463mulid2d 7976 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( 1  x.  if ( B  <  0 ,  -u
1 ,  1 ) )  =  if ( B  <  0 , 
-u 1 ,  1 ) )
6515adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  B  e.  RR )
66 0red 7958 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  0  e.  RR )
679adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  A  e.  RR )
68 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  A  =/=  0 )
6968neneqd 2368 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  -.  A  =  0 )
70 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  -.  A  <  0 )
718adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  A  e.  ZZ )
72 ztri3or 9296 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  <  0  \/  A  =  0  \/  0  <  A ) )
7371, 3, 72sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( A  <  0  \/  A  =  0  \/  0  < 
A ) )
74 3orass 981 . . . . . . . . . . . . . 14  |-  ( ( A  <  0  \/  A  =  0  \/  0  <  A )  <-> 
( A  <  0  \/  ( A  =  0  \/  0  <  A
) ) )
7573, 74sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( A  <  0  \/  ( A  =  0  \/  0  <  A ) ) )
7675orcomd 729 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( ( A  =  0  \/  0  <  A )  \/  A  <  0 ) )
7770, 76ecased 1349 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( A  =  0  \/  0  <  A ) )
7877orcomd 729 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( 0  <  A  \/  A  =  0 ) )
7969, 78ecased 1349 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  0  <  A )
80 ltmul2 8813 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  0  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( B  <  0  <->  ( A  x.  B )  <  ( A  x.  0 ) ) )
8165, 66, 67, 79, 80syl112anc 1242 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( B  <  0  <->  ( A  x.  B )  <  ( A  x.  0 ) ) )
8267recnd 7986 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  A  e.  CC )
8382mul01d 8350 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( A  x.  0 )  =  0 )
8483breq2d 4016 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( ( A  x.  B )  <  ( A  x.  0 )  <->  ( A  x.  B )  <  0
) )
8581, 84bitrd 188 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( B  <  0  <->  ( A  x.  B )  <  0
) )
8685ifbid 3556 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  if ( B  <  0 ,  -u
1 ,  1 )  =  if ( ( A  x.  B )  <  0 ,  -u
1 ,  1 ) )
8757, 64, 863eqtrrd 2215 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  if (
( A  x.  B
)  <  0 ,  -u 1 ,  1 )  =  ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
88 zdclt 9330 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
898, 3, 88sylancl 413 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  -> DECID  A  <  0
)
90 exmiddc 836 . . . . . 6  |-  (DECID  A  <  0  ->  ( A  <  0  \/  -.  A  <  0 ) )
9189, 90syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  <  0  \/  -.  A  <  0 ) )
9254, 87, 91mpjaodan 798 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
9392adantr 276 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
94 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  N  <  0 )
9594biantrurd 305 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  -> 
( ( A  x.  B )  <  0  <->  ( N  <  0  /\  ( A  x.  B
)  <  0 ) ) )
9695ifbid 3556 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 ) )
9794biantrurd 305 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  -> 
( A  <  0  <->  ( N  <  0  /\  A  <  0 ) ) )
9897ifbid 3556 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
9994biantrurd 305 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  -> 
( B  <  0  <->  ( N  <  0  /\  B  <  0 ) ) )
10099ifbid 3556 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( B  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 ) )
10198, 100oveq12d 5893 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( B  <  0 ,  -u
1 ,  1 ) )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) ) )
10293, 96, 1013eqtr3d 2218 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
103 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  -.  N  <  0 )
104103intnanrd 932 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  -.  ( N  <  0  /\  ( A  x.  B )  <  0 ) )
105104iffalsed 3545 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  =  1 )
106 1t1e1 9071 . . . 4  |-  ( 1  x.  1 )  =  1
107105, 106eqtr4di 2228 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  =  ( 1  x.  1 ) )
108103intnanrd 932 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  -.  ( N  <  0  /\  A  <  0 ) )
109108iffalsed 3545 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
110103intnanrd 932 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  -.  ( N  <  0  /\  B  <  0 ) )
111110iffalsed 3545 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 )  =  1 )
112109, 111oveq12d 5893 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) )  =  ( 1  x.  1 ) )
113107, 112eqtr4d 2213 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) ) )
114 simpl3 1002 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  N  e.  ZZ )
115 zdclt 9330 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
116114, 3, 115sylancl 413 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  -> DECID  N  <  0
)
117 exmiddc 836 . . 3  |-  (DECID  N  <  0  ->  ( N  <  0  \/  -.  N  <  0 ) )
118116, 117syl 14 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( N  <  0  \/  -.  N  <  0 ) )
119102, 113, 118mpjaodan 798 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    \/ w3o 977    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   ifcif 3535   class class class wbr 4004  (class class class)co 5875   CCcc 7809   RRcr 7810   0cc0 7811   1c1 7812    x. cmul 7816    < clt 7992    <_ cle 7993   -ucneg 8129   ZZcz 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-inn 8920  df-n0 9177  df-z 9254
This theorem is referenced by:  lgsdir  14439  lgsdi  14441
  Copyright terms: Public domain W3C validator