ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem Unicode version

Theorem lgsdilem 15537
Description: Lemma for lgsdi 15547 and lgsdir 15545: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdilem  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )

Proof of Theorem lgsdilem
StepHypRef Expression
1 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  B  =/=  0 )
21biantrud 304 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <_  B  <->  ( 0  <_  B  /\  B  =/=  0 ) ) )
3 0z 9385 . . . . . . . . . . 11  |-  0  e.  ZZ
4 simpl2 1004 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  ZZ )
54adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  B  e.  ZZ )
6 zltlen 9453 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  <  B  <->  ( 0  <_  B  /\  B  =/=  0 ) ) )
73, 5, 6sylancr 414 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <  B  <->  ( 0  <_  B  /\  B  =/=  0 ) ) )
8 simpl1 1003 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  ZZ )
98zred 9497 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  RR )
109adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  A  e.  RR )
1110renegcld 8454 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  -u A  e.  RR )
1211recnd 8103 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  -u A  e.  CC )
1312mul01d 8467 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( -u A  x.  0 )  =  0 )
1410recnd 8103 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  A  e.  CC )
154zred 9497 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  RR )
1615adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  B  e.  RR )
1716recnd 8103 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  B  e.  CC )
1814, 17mulneg1d 8485 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( -u A  x.  B
)  =  -u ( A  x.  B )
)
1913, 18breq12d 4058 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( ( -u A  x.  0 )  <  ( -u A  x.  B )  <->  0  <  -u ( A  x.  B )
) )
20 0red 8075 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
0  e.  RR )
219lt0neg1d 8590 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  <  0  <->  0  <  -u A ) )
2221biimpa 296 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
0  <  -u A )
23 ltmul2 8931 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  ( -u A  e.  RR  /\  0  <  -u A ) )  ->  ( 0  < 
B  <->  ( -u A  x.  0 )  <  ( -u A  x.  B ) ) )
2420, 16, 11, 22, 23syl112anc 1254 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <  B  <->  (
-u A  x.  0 )  <  ( -u A  x.  B )
) )
259, 15remulcld 8105 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  x.  B )  e.  RR )
2625adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( A  x.  B
)  e.  RR )
2726lt0neg1d 8590 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( ( A  x.  B )  <  0  <->  0  <  -u ( A  x.  B ) ) )
2819, 24, 273bitr4d 220 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <  B  <->  ( A  x.  B )  <  0 ) )
292, 7, 283bitr2rd 217 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( ( A  x.  B )  <  0  <->  0  <_  B ) )
30 0re 8074 . . . . . . . . . 10  |-  0  e.  RR
31 lenlt 8150 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
3230, 16, 31sylancr 414 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( 0  <_  B  <->  -.  B  <  0 ) )
3329, 32bitrd 188 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( ( A  x.  B )  <  0  <->  -.  B  <  0 ) )
3433ifbid 3592 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  if ( -.  B  <  0 ,  -u 1 ,  1 ) )
35 zdclt 9452 . . . . . . . . . . 11  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  <  0 )
363, 35mpan2 425 . . . . . . . . . 10  |-  ( B  e.  ZZ  -> DECID  B  <  0
)
37 oveq2 5954 . . . . . . . . . . . . 13  |-  ( if ( B  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  ( -u 1  x.  -u 1 ) )
38 neg1mulneg1e1 9251 . . . . . . . . . . . . 13  |-  ( -u
1  x.  -u 1
)  =  1
3937, 38eqtrdi 2254 . . . . . . . . . . . 12  |-  ( if ( B  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  1 )
40 oveq2 5954 . . . . . . . . . . . . 13  |-  ( if ( B  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  1 ) )
41 ax-1cn 8020 . . . . . . . . . . . . . 14  |-  1  e.  CC
4241mulm1i 8477 . . . . . . . . . . . . 13  |-  ( -u
1  x.  1 )  =  -u 1
4340, 42eqtrdi 2254 . . . . . . . . . . . 12  |-  ( if ( B  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  -u
1 )
4439, 43ifsbdc 3583 . . . . . . . . . . 11  |-  (DECID  B  <  0  ->  ( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  if ( B  <  0 ,  1 ,  -u 1 ) )
45 ifnotdc 3609 . . . . . . . . . . 11  |-  (DECID  B  <  0  ->  if ( -.  B  <  0 ,  -u 1 ,  1 )  =  if ( B  <  0 ,  1 ,  -u 1
) )
4644, 45eqtr4d 2241 . . . . . . . . . 10  |-  (DECID  B  <  0  ->  ( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  if ( -.  B  <  0 , 
-u 1 ,  1 ) )
4736, 46syl 14 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  ( -u 1  x.  if ( B  <  0 , 
-u 1 ,  1 ) )  =  if ( -.  B  <  0 ,  -u 1 ,  1 ) )
48473ad2ant2 1022 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u 1  x.  if ( B  <  0 , 
-u 1 ,  1 ) )  =  if ( -.  B  <  0 ,  -u 1 ,  1 ) )
4948ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( -u 1  x.  if ( B  <  0 ,  -u 1 ,  1 ) )  =  if ( -.  B  <  0 ,  -u 1 ,  1 ) )
5034, 49eqtr4d 2241 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  ( -u
1  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
51 iftrue 3576 . . . . . . . 8  |-  ( A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
5251adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
5352oveq1d 5961 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( B  <  0 ,  -u
1 ,  1 ) )  =  ( -u
1  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
5450, 53eqtr4d 2241 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  A  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
55 iffalse 3579 . . . . . . . 8  |-  ( -.  A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  1 )
5655adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  if ( A  <  0 ,  -u
1 ,  1 )  =  1 )
5756oveq1d 5961 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) )  =  ( 1  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
58 neg1cn 9143 . . . . . . . . 9  |-  -u 1  e.  CC
5958a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  -u 1  e.  CC )
6041a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  1  e.  CC )
614adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  B  e.  ZZ )
6261, 3, 35sylancl 413 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  -> DECID  B  <  0
)
6359, 60, 62ifcldcd 3608 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  if ( B  <  0 ,  -u
1 ,  1 )  e.  CC )
6463mulid2d 8093 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( 1  x.  if ( B  <  0 ,  -u
1 ,  1 ) )  =  if ( B  <  0 , 
-u 1 ,  1 ) )
6515adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  B  e.  RR )
66 0red 8075 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  0  e.  RR )
679adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  A  e.  RR )
68 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  A  =/=  0 )
6968neneqd 2397 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  -.  A  =  0 )
70 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  -.  A  <  0 )
718adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  A  e.  ZZ )
72 ztri3or 9417 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  <  0  \/  A  =  0  \/  0  <  A ) )
7371, 3, 72sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( A  <  0  \/  A  =  0  \/  0  < 
A ) )
74 3orass 984 . . . . . . . . . . . . . 14  |-  ( ( A  <  0  \/  A  =  0  \/  0  <  A )  <-> 
( A  <  0  \/  ( A  =  0  \/  0  <  A
) ) )
7573, 74sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( A  <  0  \/  ( A  =  0  \/  0  <  A ) ) )
7675orcomd 731 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( ( A  =  0  \/  0  <  A )  \/  A  <  0 ) )
7770, 76ecased 1362 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( A  =  0  \/  0  <  A ) )
7877orcomd 731 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( 0  <  A  \/  A  =  0 ) )
7969, 78ecased 1362 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  0  <  A )
80 ltmul2 8931 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  0  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( B  <  0  <->  ( A  x.  B )  <  ( A  x.  0 ) ) )
8165, 66, 67, 79, 80syl112anc 1254 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( B  <  0  <->  ( A  x.  B )  <  ( A  x.  0 ) ) )
8267recnd 8103 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  A  e.  CC )
8382mul01d 8467 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( A  x.  0 )  =  0 )
8483breq2d 4057 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( ( A  x.  B )  <  ( A  x.  0 )  <->  ( A  x.  B )  <  0
) )
8581, 84bitrd 188 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  ( B  <  0  <->  ( A  x.  B )  <  0
) )
8685ifbid 3592 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  if ( B  <  0 ,  -u
1 ,  1 )  =  if ( ( A  x.  B )  <  0 ,  -u
1 ,  1 ) )
8757, 64, 863eqtrrd 2243 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  A  <  0
)  ->  if (
( A  x.  B
)  <  0 ,  -u 1 ,  1 )  =  ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
88 zdclt 9452 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
898, 3, 88sylancl 413 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  -> DECID  A  <  0
)
90 exmiddc 838 . . . . . 6  |-  (DECID  A  <  0  ->  ( A  <  0  \/  -.  A  <  0 ) )
9189, 90syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  <  0  \/  -.  A  <  0 ) )
9254, 87, 91mpjaodan 800 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
9392adantr 276 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( B  <  0 , 
-u 1 ,  1 ) ) )
94 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  N  <  0 )
9594biantrurd 305 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  -> 
( ( A  x.  B )  <  0  <->  ( N  <  0  /\  ( A  x.  B
)  <  0 ) ) )
9695ifbid 3592 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( ( A  x.  B )  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 ) )
9794biantrurd 305 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  -> 
( A  <  0  <->  ( N  <  0  /\  A  <  0 ) ) )
9897ifbid 3592 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
9994biantrurd 305 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  -> 
( B  <  0  <->  ( N  <  0  /\  B  <  0 ) ) )
10099ifbid 3592 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( B  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 ) )
10198, 100oveq12d 5964 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( B  <  0 ,  -u
1 ,  1 ) )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) ) )
10293, 96, 1013eqtr3d 2246 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  <  0 )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
103 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  -.  N  <  0 )
104103intnanrd 934 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  -.  ( N  <  0  /\  ( A  x.  B )  <  0 ) )
105104iffalsed 3581 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  =  1 )
106 1t1e1 9191 . . . 4  |-  ( 1  x.  1 )  =  1
107105, 106eqtr4di 2256 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  =  ( 1  x.  1 ) )
108103intnanrd 934 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  -.  ( N  <  0  /\  A  <  0 ) )
109108iffalsed 3581 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
110103intnanrd 934 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  -.  ( N  <  0  /\  B  <  0 ) )
111110iffalsed 3581 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 )  =  1 )
112109, 111oveq12d 5964 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) )  =  ( 1  x.  1 ) )
113107, 112eqtr4d 2241 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  -.  N  <  0
)  ->  if (
( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) ) )
114 simpl3 1005 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  N  e.  ZZ )
115 zdclt 9452 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
116114, 3, 115sylancl 413 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  -> DECID  N  <  0
)
117 exmiddc 838 . . 3  |-  (DECID  N  <  0  ->  ( N  <  0  \/  -.  N  <  0 ) )
118116, 117syl 14 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( N  <  0  \/  -.  N  <  0 ) )
119102, 113, 118mpjaodan 800 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   ifcif 3571   class class class wbr 4045  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    x. cmul 7932    < clt 8109    <_ cle 8110   -ucneg 8246   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-inn 9039  df-n0 9298  df-z 9375
This theorem is referenced by:  lgsdir  15545  lgsdi  15547
  Copyright terms: Public domain W3C validator