ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinxsng Unicode version

Theorem iinxsng 3986
Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Hypothesis
Ref Expression
iinxsng.1  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
iinxsng  |-  ( A  e.  V  ->  |^|_ x  e.  { A } B  =  C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iinxsng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iin 3915 . 2  |-  |^|_ x  e.  { A } B  =  { y  |  A. x  e.  { A } y  e.  B }
2 iinxsng.1 . . . . 5  |-  ( x  =  A  ->  B  =  C )
32eleq2d 2263 . . . 4  |-  ( x  =  A  ->  (
y  e.  B  <->  y  e.  C ) )
43ralsng 3658 . . 3  |-  ( A  e.  V  ->  ( A. x  e.  { A } y  e.  B  <->  y  e.  C ) )
54abbi1dv 2313 . 2  |-  ( A  e.  V  ->  { y  |  A. x  e. 
{ A } y  e.  B }  =  C )
61, 5eqtrid 2238 1  |-  ( A  e.  V  ->  |^|_ x  e.  { A } B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   {csn 3618   |^|_ciin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-sbc 2986  df-sn 3624  df-iin 3915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator