Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsng Unicode version

Theorem ralsng 3559
 Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralsng.1
Assertion
Ref Expression
ralsng
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ralsng
StepHypRef Expression
1 ralsns 3557 . 2
2 ralsng.1 . . 3
32sbcieg 2936 . 2
41, 3bitrd 187 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1331   wcel 1480  wral 2414  wsbc 2904  csn 3522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-sbc 2905  df-sn 3528 This theorem is referenced by:  ralsn  3562  ralprg  3569  raltpg  3571  ralunsn  3719  iinxsng  3881  posng  4606  fimax2gtrilemstep  6787  iseqf1olemqk  10260  seq3f1olemstep  10267  fimaxre2  10991  nninfsellemdc  13195
 Copyright terms: Public domain W3C validator