| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralsng | Unicode version | ||
| Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralsng.1 |
|
| Ref | Expression |
|---|---|
| ralsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsns 3681 |
. 2
| |
| 2 | ralsng.1 |
. . 3
| |
| 3 | 2 | sbcieg 3038 |
. 2
|
| 4 | 1, 3 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-sbc 3006 df-sn 3649 |
| This theorem is referenced by: ralsn 3686 ralprg 3694 raltpg 3696 ralunsn 3852 iinxsng 4015 posng 4765 fimax2gtrilemstep 7023 iseqf1olemqk 10689 seq3f1olemstep 10696 fimaxre2 11653 mgm1 13317 sgrp1 13358 mnd1 13402 grp1 13553 0subg 13650 ring1 13936 2sqlem10 15717 nninfsellemdc 16149 |
| Copyright terms: Public domain | W3C validator |