| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralsng | Unicode version | ||
| Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralsng.1 |
|
| Ref | Expression |
|---|---|
| ralsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsns 3670 |
. 2
| |
| 2 | ralsng.1 |
. . 3
| |
| 3 | 2 | sbcieg 3030 |
. 2
|
| 4 | 1, 3 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-sbc 2998 df-sn 3638 |
| This theorem is referenced by: ralsn 3675 ralprg 3683 raltpg 3685 ralunsn 3837 iinxsng 4000 posng 4746 fimax2gtrilemstep 6996 iseqf1olemqk 10650 seq3f1olemstep 10657 fimaxre2 11480 mgm1 13144 sgrp1 13185 mnd1 13229 grp1 13380 0subg 13477 ring1 13763 2sqlem10 15544 nninfsellemdc 15880 |
| Copyright terms: Public domain | W3C validator |