| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralsng | Unicode version | ||
| Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralsng.1 |
|
| Ref | Expression |
|---|---|
| ralsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsns 3671 |
. 2
| |
| 2 | ralsng.1 |
. . 3
| |
| 3 | 2 | sbcieg 3031 |
. 2
|
| 4 | 1, 3 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-sbc 2999 df-sn 3639 |
| This theorem is referenced by: ralsn 3676 ralprg 3684 raltpg 3686 ralunsn 3838 iinxsng 4001 posng 4747 fimax2gtrilemstep 6997 iseqf1olemqk 10652 seq3f1olemstep 10659 fimaxre2 11538 mgm1 13202 sgrp1 13243 mnd1 13287 grp1 13438 0subg 13535 ring1 13821 2sqlem10 15602 nninfsellemdc 15947 |
| Copyright terms: Public domain | W3C validator |