Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralsng | Unicode version |
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralsng.1 |
Ref | Expression |
---|---|
ralsng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsns 3621 | . 2 | |
2 | ralsng.1 | . . 3 | |
3 | 2 | sbcieg 2987 | . 2 |
4 | 1, 3 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 wral 2448 wsbc 2955 csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-sbc 2956 df-sn 3589 |
This theorem is referenced by: ralsn 3626 ralprg 3634 raltpg 3636 ralunsn 3784 iinxsng 3946 posng 4683 fimax2gtrilemstep 6878 iseqf1olemqk 10450 seq3f1olemstep 10457 fimaxre2 11190 mgm1 12624 sgrp1 12651 mnd1 12679 2sqlem10 13755 nninfsellemdc 14043 |
Copyright terms: Public domain | W3C validator |