| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralsng | Unicode version | ||
| Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralsng.1 |
|
| Ref | Expression |
|---|---|
| ralsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsns 3704 |
. 2
| |
| 2 | ralsng.1 |
. . 3
| |
| 3 | 2 | sbcieg 3061 |
. 2
|
| 4 | 1, 3 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-sbc 3029 df-sn 3672 |
| This theorem is referenced by: ralsn 3709 ralprg 3717 raltpg 3719 ralunsn 3875 iinxsng 4038 posng 4790 fimax2gtrilemstep 7058 iseqf1olemqk 10724 seq3f1olemstep 10731 fimaxre2 11733 mgm1 13398 sgrp1 13439 mnd1 13483 grp1 13634 0subg 13731 ring1 14017 2sqlem10 15798 nninfsellemdc 16335 |
| Copyright terms: Public domain | W3C validator |