ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsng Unicode version

Theorem ralsng 3623
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralsng.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralsng  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  ps ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem ralsng
StepHypRef Expression
1 ralsns 3621 . 2  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
2 ralsng.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32sbcieg 2987 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
41, 3bitrd 187 1  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   [.wsbc 2955   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-sbc 2956  df-sn 3589
This theorem is referenced by:  ralsn  3626  ralprg  3634  raltpg  3636  ralunsn  3784  iinxsng  3946  posng  4683  fimax2gtrilemstep  6878  iseqf1olemqk  10450  seq3f1olemstep  10457  fimaxre2  11190  mgm1  12624  sgrp1  12651  mnd1  12679  2sqlem10  13755  nninfsellemdc  14043
  Copyright terms: Public domain W3C validator