Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralsng | Unicode version |
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralsng.1 |
Ref | Expression |
---|---|
ralsng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsns 3614 | . 2 | |
2 | ralsng.1 | . . 3 | |
3 | 2 | sbcieg 2983 | . 2 |
4 | 1, 3 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 wral 2444 wsbc 2951 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-sbc 2952 df-sn 3582 |
This theorem is referenced by: ralsn 3619 ralprg 3627 raltpg 3629 ralunsn 3777 iinxsng 3939 posng 4676 fimax2gtrilemstep 6866 iseqf1olemqk 10429 seq3f1olemstep 10436 fimaxre2 11168 mgm1 12601 2sqlem10 13601 nninfsellemdc 13890 |
Copyright terms: Public domain | W3C validator |