ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinxsng GIF version

Theorem iinxsng 4015
Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Hypothesis
Ref Expression
iinxsng.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iinxsng (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iinxsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 3944 . 2 𝑥 ∈ {𝐴}𝐵 = {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵}
2 iinxsng.1 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
32eleq2d 2277 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
43ralsng 3683 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
54abbi1dv 2327 . 2 (𝐴𝑉 → {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵} = 𝐶)
61, 5eqtrid 2252 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  {cab 2193  wral 2486  {csn 3643   ciin 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-sbc 3006  df-sn 3649  df-iin 3944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator