ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinm Unicode version

Theorem riinm 4038
Description: Relative intersection of an inhabited family. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
riinm  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  |^|_ x  e.  X  S )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    S( x)

Proof of Theorem riinm
StepHypRef Expression
1 incom 3396 . 2  |-  ( A  i^i  |^|_ x  e.  X  S )  =  (
|^|_ x  e.  X  S  i^i  A )
2 r19.2m 3578 . . . . 5  |-  ( ( E. x  x  e.  X  /\  A. x  e.  X  S  C_  A
)  ->  E. x  e.  X  S  C_  A
)
32ancoms 268 . . . 4  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  E. x  e.  X  S  C_  A
)
4 iinss 4017 . . . 4  |-  ( E. x  e.  X  S  C_  A  ->  |^|_ x  e.  X  S  C_  A
)
53, 4syl 14 . . 3  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  |^|_ x  e.  X  S  C_  A
)
6 df-ss 3210 . . 3  |-  ( |^|_ x  e.  X  S  C_  A 
<->  ( |^|_ x  e.  X  S  i^i  A )  = 
|^|_ x  e.  X  S )
75, 6sylib 122 . 2  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  ( |^|_ x  e.  X  S  i^i  A )  =  |^|_ x  e.  X  S )
81, 7eqtrid 2274 1  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  |^|_ x  e.  X  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   |^|_ciin 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-iin 3968
This theorem is referenced by:  riinerm  6755
  Copyright terms: Public domain W3C validator