ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinm Unicode version

Theorem riinm 3989
Description: Relative intersection of an inhabited family. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
riinm  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  |^|_ x  e.  X  S )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    S( x)

Proof of Theorem riinm
StepHypRef Expression
1 incom 3355 . 2  |-  ( A  i^i  |^|_ x  e.  X  S )  =  (
|^|_ x  e.  X  S  i^i  A )
2 r19.2m 3537 . . . . 5  |-  ( ( E. x  x  e.  X  /\  A. x  e.  X  S  C_  A
)  ->  E. x  e.  X  S  C_  A
)
32ancoms 268 . . . 4  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  E. x  e.  X  S  C_  A
)
4 iinss 3968 . . . 4  |-  ( E. x  e.  X  S  C_  A  ->  |^|_ x  e.  X  S  C_  A
)
53, 4syl 14 . . 3  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  |^|_ x  e.  X  S  C_  A
)
6 df-ss 3170 . . 3  |-  ( |^|_ x  e.  X  S  C_  A 
<->  ( |^|_ x  e.  X  S  i^i  A )  = 
|^|_ x  e.  X  S )
75, 6sylib 122 . 2  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  ( |^|_ x  e.  X  S  i^i  A )  =  |^|_ x  e.  X  S )
81, 7eqtrid 2241 1  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  |^|_ x  e.  X  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476    i^i cin 3156    C_ wss 3157   |^|_ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-iin 3919
This theorem is referenced by:  riinerm  6667
  Copyright terms: Public domain W3C validator