ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinm Unicode version

Theorem riinm 3938
Description: Relative intersection of an inhabited family. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
riinm  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  |^|_ x  e.  X  S )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    S( x)

Proof of Theorem riinm
StepHypRef Expression
1 incom 3314 . 2  |-  ( A  i^i  |^|_ x  e.  X  S )  =  (
|^|_ x  e.  X  S  i^i  A )
2 r19.2m 3495 . . . . 5  |-  ( ( E. x  x  e.  X  /\  A. x  e.  X  S  C_  A
)  ->  E. x  e.  X  S  C_  A
)
32ancoms 266 . . . 4  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  E. x  e.  X  S  C_  A
)
4 iinss 3917 . . . 4  |-  ( E. x  e.  X  S  C_  A  ->  |^|_ x  e.  X  S  C_  A
)
53, 4syl 14 . . 3  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  |^|_ x  e.  X  S  C_  A
)
6 df-ss 3129 . . 3  |-  ( |^|_ x  e.  X  S  C_  A 
<->  ( |^|_ x  e.  X  S  i^i  A )  = 
|^|_ x  e.  X  S )
75, 6sylib 121 . 2  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  ( |^|_ x  e.  X  S  i^i  A )  =  |^|_ x  e.  X  S )
81, 7syl5eq 2211 1  |-  ( ( A. x  e.  X  S  C_  A  /\  E. x  x  e.  X
)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  |^|_ x  e.  X  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445    i^i cin 3115    C_ wss 3116   |^|_ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-iin 3869
This theorem is referenced by:  riinerm  6574
  Copyright terms: Public domain W3C validator