Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > in12 | GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) |
Ref | Expression |
---|---|
in12 | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3314 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | ineq1i 3319 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐵 ∩ 𝐴) ∩ 𝐶) |
3 | inass 3332 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
4 | inass 3332 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∩ 𝐶) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | |
5 | 2, 3, 4 | 3eqtr3i 2194 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∩ cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 |
This theorem is referenced by: in32 3334 in31 3336 in4 3338 resdmres 5095 |
Copyright terms: Public domain | W3C validator |