| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1i | Unicode version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 |
|
| Ref | Expression |
|---|---|
| ineq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 |
. 2
| |
| 2 | ineq1 3375 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: in12 3392 inindi 3398 dfrab2 3456 dfrab3 3457 disjpr2 3707 resres 4990 imainrect 5147 ssenen 6973 minmax 11656 xrminmax 11691 nnmindc 12470 nnminle 12471 setsfun 12982 setsfun0 12983 ressressg 13022 tgrest 14756 |
| Copyright terms: Public domain | W3C validator |