| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ineq1i | Unicode version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| ineq1i.1 | 
 | 
| Ref | Expression | 
|---|---|
| ineq1i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ineq1i.1 | 
. 2
 | |
| 2 | ineq1 3357 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 | 
| This theorem is referenced by: in12 3374 inindi 3380 dfrab2 3438 dfrab3 3439 disjpr2 3686 resres 4958 imainrect 5115 ssenen 6912 minmax 11395 xrminmax 11430 nnmindc 12201 nnminle 12202 setsfun 12713 setsfun0 12714 ressressg 12753 tgrest 14405 | 
| Copyright terms: Public domain | W3C validator |