Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq1i | Unicode version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 |
Ref | Expression |
---|---|
ineq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 | |
2 | ineq1 3315 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 cin 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-in 3121 |
This theorem is referenced by: in12 3332 inindi 3338 dfrab2 3396 dfrab3 3397 disjpr2 3639 resres 4895 imainrect 5048 ssenen 6813 minmax 11167 xrminmax 11202 nnmindc 11963 nnminle 11964 setsfun 12425 setsfun0 12426 tgrest 12769 |
Copyright terms: Public domain | W3C validator |