| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1i | Unicode version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 |
|
| Ref | Expression |
|---|---|
| ineq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 |
. 2
| |
| 2 | ineq1 3367 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: in12 3384 inindi 3390 dfrab2 3448 dfrab3 3449 disjpr2 3697 resres 4972 imainrect 5129 ssenen 6950 minmax 11574 xrminmax 11609 nnmindc 12388 nnminle 12389 setsfun 12900 setsfun0 12901 ressressg 12940 tgrest 14674 |
| Copyright terms: Public domain | W3C validator |