ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmres Unicode version

Theorem resdmres 4890
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdmres  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  |`  B )

Proof of Theorem resdmres
StepHypRef Expression
1 in12 3200 . . . 4  |-  ( A  i^i  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )  =  ( ( B  X.  _V )  i^i  ( A  i^i  ( dom  A  X.  _V ) ) )
2 df-res 4425 . . . . . 6  |-  ( A  |`  dom  A )  =  ( A  i^i  ( dom  A  X.  _V )
)
3 resdm2 4889 . . . . . 6  |-  ( A  |`  dom  A )  =  `' `' A
42, 3eqtr3i 2107 . . . . 5  |-  ( A  i^i  ( dom  A  X.  _V ) )  =  `' `' A
54ineq2i 3187 . . . 4  |-  ( ( B  X.  _V )  i^i  ( A  i^i  ( dom  A  X.  _V )
) )  =  ( ( B  X.  _V )  i^i  `' `' A
)
6 incom 3181 . . . 4  |-  ( ( B  X.  _V )  i^i  `' `' A )  =  ( `' `' A  i^i  ( B  X.  _V ) )
71, 5, 63eqtri 2109 . . 3  |-  ( A  i^i  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )  =  ( `' `' A  i^i  ( B  X.  _V ) )
8 df-res 4425 . . . 4  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  i^i  ( dom  ( A  |`  B )  X.  _V ) )
9 dmres 4703 . . . . . . 7  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
109xpeq1i 4433 . . . . . 6  |-  ( dom  ( A  |`  B )  X.  _V )  =  ( ( B  i^i  dom 
A )  X.  _V )
11 xpindir 4542 . . . . . 6  |-  ( ( B  i^i  dom  A
)  X.  _V )  =  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V ) )
1210, 11eqtri 2105 . . . . 5  |-  ( dom  ( A  |`  B )  X.  _V )  =  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V )
)
1312ineq2i 3187 . . . 4  |-  ( A  i^i  ( dom  ( A  |`  B )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )
148, 13eqtri 2105 . . 3  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )
15 df-res 4425 . . 3  |-  ( `' `' A  |`  B )  =  ( `' `' A  i^i  ( B  X.  _V ) )
167, 14, 153eqtr4i 2115 . 2  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( `' `' A  |`  B )
17 rescnvcnv 4861 . 2  |-  ( `' `' A  |`  B )  =  ( A  |`  B )
1816, 17eqtri 2105 1  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1287   _Vcvv 2615    i^i cin 2987    X. cxp 4411   `'ccnv 4412   dom cdm 4413    |` cres 4415
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-br 3823  df-opab 3877  df-xp 4419  df-rel 4420  df-cnv 4421  df-dm 4423  df-rn 4424  df-res 4425
This theorem is referenced by:  imadmres  4891
  Copyright terms: Public domain W3C validator