ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmres Unicode version

Theorem resdmres 5095
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdmres  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  |`  B )

Proof of Theorem resdmres
StepHypRef Expression
1 in12 3333 . . . 4  |-  ( A  i^i  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )  =  ( ( B  X.  _V )  i^i  ( A  i^i  ( dom  A  X.  _V ) ) )
2 df-res 4616 . . . . . 6  |-  ( A  |`  dom  A )  =  ( A  i^i  ( dom  A  X.  _V )
)
3 resdm2 5094 . . . . . 6  |-  ( A  |`  dom  A )  =  `' `' A
42, 3eqtr3i 2188 . . . . 5  |-  ( A  i^i  ( dom  A  X.  _V ) )  =  `' `' A
54ineq2i 3320 . . . 4  |-  ( ( B  X.  _V )  i^i  ( A  i^i  ( dom  A  X.  _V )
) )  =  ( ( B  X.  _V )  i^i  `' `' A
)
6 incom 3314 . . . 4  |-  ( ( B  X.  _V )  i^i  `' `' A )  =  ( `' `' A  i^i  ( B  X.  _V ) )
71, 5, 63eqtri 2190 . . 3  |-  ( A  i^i  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )  =  ( `' `' A  i^i  ( B  X.  _V ) )
8 df-res 4616 . . . 4  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  i^i  ( dom  ( A  |`  B )  X.  _V ) )
9 dmres 4905 . . . . . . 7  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
109xpeq1i 4624 . . . . . 6  |-  ( dom  ( A  |`  B )  X.  _V )  =  ( ( B  i^i  dom 
A )  X.  _V )
11 xpindir 4740 . . . . . 6  |-  ( ( B  i^i  dom  A
)  X.  _V )  =  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V ) )
1210, 11eqtri 2186 . . . . 5  |-  ( dom  ( A  |`  B )  X.  _V )  =  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V )
)
1312ineq2i 3320 . . . 4  |-  ( A  i^i  ( dom  ( A  |`  B )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )
148, 13eqtri 2186 . . 3  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )
15 df-res 4616 . . 3  |-  ( `' `' A  |`  B )  =  ( `' `' A  i^i  ( B  X.  _V ) )
167, 14, 153eqtr4i 2196 . 2  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( `' `' A  |`  B )
17 rescnvcnv 5066 . 2  |-  ( `' `' A  |`  B )  =  ( A  |`  B )
1816, 17eqtri 2186 1  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1343   _Vcvv 2726    i^i cin 3115    X. cxp 4602   `'ccnv 4603   dom cdm 4604    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616
This theorem is referenced by:  imadmres  5096  metreslem  13030
  Copyright terms: Public domain W3C validator