ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmres Unicode version

Theorem resdmres 5193
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdmres  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  |`  B )

Proof of Theorem resdmres
StepHypRef Expression
1 in12 3392 . . . 4  |-  ( A  i^i  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )  =  ( ( B  X.  _V )  i^i  ( A  i^i  ( dom  A  X.  _V ) ) )
2 df-res 4705 . . . . . 6  |-  ( A  |`  dom  A )  =  ( A  i^i  ( dom  A  X.  _V )
)
3 resdm2 5192 . . . . . 6  |-  ( A  |`  dom  A )  =  `' `' A
42, 3eqtr3i 2230 . . . . 5  |-  ( A  i^i  ( dom  A  X.  _V ) )  =  `' `' A
54ineq2i 3379 . . . 4  |-  ( ( B  X.  _V )  i^i  ( A  i^i  ( dom  A  X.  _V )
) )  =  ( ( B  X.  _V )  i^i  `' `' A
)
6 incom 3373 . . . 4  |-  ( ( B  X.  _V )  i^i  `' `' A )  =  ( `' `' A  i^i  ( B  X.  _V ) )
71, 5, 63eqtri 2232 . . 3  |-  ( A  i^i  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )  =  ( `' `' A  i^i  ( B  X.  _V ) )
8 df-res 4705 . . . 4  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  i^i  ( dom  ( A  |`  B )  X.  _V ) )
9 dmres 4999 . . . . . . 7  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
109xpeq1i 4713 . . . . . 6  |-  ( dom  ( A  |`  B )  X.  _V )  =  ( ( B  i^i  dom 
A )  X.  _V )
11 xpindir 4832 . . . . . 6  |-  ( ( B  i^i  dom  A
)  X.  _V )  =  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V ) )
1210, 11eqtri 2228 . . . . 5  |-  ( dom  ( A  |`  B )  X.  _V )  =  ( ( B  X.  _V )  i^i  ( dom  A  X.  _V )
)
1312ineq2i 3379 . . . 4  |-  ( A  i^i  ( dom  ( A  |`  B )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )
148, 13eqtri 2228 . . 3  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( dom  A  X.  _V ) ) )
15 df-res 4705 . . 3  |-  ( `' `' A  |`  B )  =  ( `' `' A  i^i  ( B  X.  _V ) )
167, 14, 153eqtr4i 2238 . 2  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( `' `' A  |`  B )
17 rescnvcnv 5164 . 2  |-  ( `' `' A  |`  B )  =  ( A  |`  B )
1816, 17eqtri 2228 1  |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   _Vcvv 2776    i^i cin 3173    X. cxp 4691   `'ccnv 4692   dom cdm 4693    |` cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705
This theorem is referenced by:  imadmres  5194  metreslem  14967
  Copyright terms: Public domain W3C validator