ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun Unicode version

Theorem setsfun 12713
Description: A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( G sSet  <. I ,  E >. ) )

Proof of Theorem setsfun
StepHypRef Expression
1 funres 5299 . . . 4  |-  ( Fun 
G  ->  Fun  ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) ) )
21ad2antlr 489 . . 3  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( G  |`  ( _V 
\  dom  { <. I ,  E >. } ) ) )
3 funsng 5304 . . . 4  |-  ( ( I  e.  U  /\  E  e.  W )  ->  Fun  { <. I ,  E >. } )
43adantl 277 . . 3  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  {
<. I ,  E >. } )
5 dmres 4967 . . . . . 6  |-  dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  =  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  G )
65ineq1i 3360 . . . . 5  |-  ( dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  G
)  i^i  dom  { <. I ,  E >. } )
7 in32 3375 . . . . . 6  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  G
)  i^i  dom  { <. I ,  E >. } )  =  ( ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  G
)
8 incom 3355 . . . . . . . 8  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )
9 disjdif 3523 . . . . . . . 8  |-  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )  =  (/)
108, 9eqtri 2217 . . . . . . 7  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  (/)
1110ineq1i 3360 . . . . . 6  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  G
)  =  ( (/)  i^i 
dom  G )
12 0in 3486 . . . . . 6  |-  ( (/)  i^i 
dom  G )  =  (/)
137, 11, 123eqtri 2221 . . . . 5  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  G
)  i^i  dom  { <. I ,  E >. } )  =  (/)
146, 13eqtri 2217 . . . 4  |-  ( dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/)
1514a1i 9 . . 3  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  ( dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/) )
16 funun 5302 . . 3  |-  ( ( ( Fun  ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  /\  Fun  {
<. I ,  E >. } )  /\  ( dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/) )  ->  Fun  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
172, 4, 15, 16syl21anc 1248 . 2  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
18 simpll 527 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  G  e.  V )
19 opexg 4261 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  e. 
_V )
2019adantl 277 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  <. I ,  E >.  e.  _V )
21 setsvalg 12708 . . . 4  |-  ( ( G  e.  V  /\  <.
I ,  E >.  e. 
_V )  ->  ( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
2218, 20, 21syl2anc 411 . . 3  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  ( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
2322funeqd 5280 . 2  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  ( Fun  ( G sSet  <. I ,  E >. )  <->  Fun  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) ) )
2417, 23mpbird 167 1  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( G sSet  <. I ,  E >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    \ cdif 3154    u. cun 3155    i^i cin 3156   (/)c0 3450   {csn 3622   <.cop 3625   dom cdm 4663    |` cres 4665   Fun wfun 5252  (class class class)co 5922   sSet csts 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sets 12685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator