ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun Unicode version

Theorem setsfun 11994
Description: A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( G sSet  <. I ,  E >. ) )

Proof of Theorem setsfun
StepHypRef Expression
1 funres 5164 . . . 4  |-  ( Fun 
G  ->  Fun  ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) ) )
21ad2antlr 480 . . 3  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( G  |`  ( _V 
\  dom  { <. I ,  E >. } ) ) )
3 funsng 5169 . . . 4  |-  ( ( I  e.  U  /\  E  e.  W )  ->  Fun  { <. I ,  E >. } )
43adantl 275 . . 3  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  {
<. I ,  E >. } )
5 dmres 4840 . . . . . 6  |-  dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  =  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  G )
65ineq1i 3273 . . . . 5  |-  ( dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  G
)  i^i  dom  { <. I ,  E >. } )
7 in32 3288 . . . . . 6  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  G
)  i^i  dom  { <. I ,  E >. } )  =  ( ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  G
)
8 incom 3268 . . . . . . . 8  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )
9 disjdif 3435 . . . . . . . 8  |-  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )  =  (/)
108, 9eqtri 2160 . . . . . . 7  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  (/)
1110ineq1i 3273 . . . . . 6  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  G
)  =  ( (/)  i^i 
dom  G )
12 0in 3398 . . . . . 6  |-  ( (/)  i^i 
dom  G )  =  (/)
137, 11, 123eqtri 2164 . . . . 5  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  G
)  i^i  dom  { <. I ,  E >. } )  =  (/)
146, 13eqtri 2160 . . . 4  |-  ( dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/)
1514a1i 9 . . 3  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  ( dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/) )
16 funun 5167 . . 3  |-  ( ( ( Fun  ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  /\  Fun  {
<. I ,  E >. } )  /\  ( dom  ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/) )  ->  Fun  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
172, 4, 15, 16syl21anc 1215 . 2  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
18 simpll 518 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  G  e.  V )
19 opexg 4150 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  e. 
_V )
2019adantl 275 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  <. I ,  E >.  e.  _V )
21 setsvalg 11989 . . . 4  |-  ( ( G  e.  V  /\  <.
I ,  E >.  e. 
_V )  ->  ( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
2218, 20, 21syl2anc 408 . . 3  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  ( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
2322funeqd 5145 . 2  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  ( Fun  ( G sSet  <. I ,  E >. )  <->  Fun  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) ) )
2417, 23mpbird 166 1  |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( G sSet  <. I ,  E >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    \ cdif 3068    u. cun 3069    i^i cin 3070   (/)c0 3363   {csn 3527   <.cop 3530   dom cdm 4539    |` cres 4541   Fun wfun 5117  (class class class)co 5774   sSet csts 11957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sets 11966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator