ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainrect Unicode version

Theorem imainrect 5070
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
imainrect  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ( ( G "
( Y  i^i  A
) )  i^i  B
)

Proof of Theorem imainrect
StepHypRef Expression
1 df-res 4635 . . 3  |-  ( ( G  i^i  ( A  X.  B ) )  |`  Y )  =  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
21rneqi 4851 . 2  |-  ran  (
( G  i^i  ( A  X.  B ) )  |`  Y )  =  ran  ( ( G  i^i  ( A  X.  B
) )  i^i  ( Y  X.  _V ) )
3 df-ima 4636 . 2  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ran  ( ( G  i^i  ( A  X.  B ) )  |`  Y )
4 df-ima 4636 . . . . 5  |-  ( G
" ( Y  i^i  A ) )  =  ran  ( G  |`  ( Y  i^i  A ) )
5 df-res 4635 . . . . . 6  |-  ( G  |`  ( Y  i^i  A
) )  =  ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )
65rneqi 4851 . . . . 5  |-  ran  ( G  |`  ( Y  i^i  A ) )  =  ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)
74, 6eqtri 2198 . . . 4  |-  ( G
" ( Y  i^i  A ) )  =  ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)
87ineq1i 3332 . . 3  |-  ( ( G " ( Y  i^i  A ) )  i^i  B )  =  ( ran  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i 
B )
9 cnvin 5032 . . . . . 6  |-  `' ( ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  ( _V  X.  B ) )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  `' ( _V  X.  B ) )
10 inxp 4757 . . . . . . . . . 10  |-  ( ( A  X.  _V )  i^i  ( _V  X.  B
) )  =  ( ( A  i^i  _V )  X.  ( _V  i^i  B ) )
11 inv1 3459 . . . . . . . . . . 11  |-  ( A  i^i  _V )  =  A
12 incom 3327 . . . . . . . . . . . 12  |-  ( _V 
i^i  B )  =  ( B  i^i  _V )
13 inv1 3459 . . . . . . . . . . . 12  |-  ( B  i^i  _V )  =  B
1412, 13eqtri 2198 . . . . . . . . . . 11  |-  ( _V 
i^i  B )  =  B
1511, 14xpeq12i 4645 . . . . . . . . . 10  |-  ( ( A  i^i  _V )  X.  ( _V  i^i  B
) )  =  ( A  X.  B )
1610, 15eqtr2i 2199 . . . . . . . . 9  |-  ( A  X.  B )  =  ( ( A  X.  _V )  i^i  ( _V  X.  B ) )
1716ineq2i 3333 . . . . . . . 8  |-  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( ( A  X.  _V )  i^i  ( _V  X.  B
) ) )
18 in32 3347 . . . . . . . 8  |-  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  B ) )
19 xpindir 4759 . . . . . . . . . . . 12  |-  ( ( Y  i^i  A )  X.  _V )  =  ( ( Y  X.  _V )  i^i  ( A  X.  _V ) )
2019ineq2i 3333 . . . . . . . . . . 11  |-  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  ( G  i^i  (
( Y  X.  _V )  i^i  ( A  X.  _V ) ) )
21 inass 3345 . . . . . . . . . . 11  |-  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  =  ( G  i^i  ( ( Y  X.  _V )  i^i  ( A  X.  _V ) ) )
2220, 21eqtr4i 2201 . . . . . . . . . 10  |-  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( A  X.  _V ) )
2322ineq1i 3332 . . . . . . . . 9  |-  ( ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  i^i  ( _V  X.  B ) )
24 inass 3345 . . . . . . . . 9  |-  ( ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V ) )  i^i  (
( A  X.  _V )  i^i  ( _V  X.  B ) ) )
2523, 24eqtri 2198 . . . . . . . 8  |-  ( ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( ( A  X.  _V )  i^i  ( _V  X.  B
) ) )
2617, 18, 253eqtr4i 2208 . . . . . . 7  |-  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  ( _V  X.  B ) )
2726cnveqi 4798 . . . . . 6  |-  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  `' ( ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  i^i  ( _V  X.  B ) )
28 df-res 4635 . . . . . . 7  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  ( B  X.  _V ) )
29 cnvxp 5043 . . . . . . . 8  |-  `' ( _V  X.  B )  =  ( B  X.  _V )
3029ineq2i 3333 . . . . . . 7  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  `' ( _V  X.  B ) )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( B  X.  _V ) )
3128, 30eqtr4i 2201 . . . . . 6  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  `' ( _V  X.  B ) )
329, 27, 313eqtr4ri 2209 . . . . 5  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
3332dmeqi 4824 . . . 4  |-  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  |`  B )  =  dom  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
34 incom 3327 . . . . 5  |-  ( B  i^i  dom  `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) ) )  =  ( dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )
35 dmres 4924 . . . . 5  |-  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  |`  B )  =  ( B  i^i  dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
) )
36 df-rn 4634 . . . . . 6  |-  ran  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  dom  `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )
3736ineq1i 3332 . . . . 5  |-  ( ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )  =  ( dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )
3834, 35, 373eqtr4ri 2209 . . . 4  |-  ( ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )  =  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  |`  B )
39 df-rn 4634 . . . 4  |-  ran  (
( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  dom  `' ( ( G  i^i  ( A  X.  B
) )  i^i  ( Y  X.  _V ) )
4033, 38, 393eqtr4ri 2209 . . 3  |-  ran  (
( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ran  ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  i^i  B )
418, 40eqtr4i 2201 . 2  |-  ( ( G " ( Y  i^i  A ) )  i^i  B )  =  ran  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
422, 3, 413eqtr4i 2208 1  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ( ( G "
( Y  i^i  A
) )  i^i  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2737    i^i cin 3128    X. cxp 4621   `'ccnv 4622   dom cdm 4623   ran crn 4624    |` cres 4625   "cima 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-xp 4629  df-rel 4630  df-cnv 4631  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636
This theorem is referenced by:  ecinxp  6604
  Copyright terms: Public domain W3C validator