Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imainrect | Unicode version |
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
Ref | Expression |
---|---|
imainrect |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4623 | . . 3 | |
2 | 1 | rneqi 4839 | . 2 |
3 | df-ima 4624 | . 2 | |
4 | df-ima 4624 | . . . . 5 | |
5 | df-res 4623 | . . . . . 6 | |
6 | 5 | rneqi 4839 | . . . . 5 |
7 | 4, 6 | eqtri 2191 | . . . 4 |
8 | 7 | ineq1i 3324 | . . 3 |
9 | cnvin 5018 | . . . . . 6 | |
10 | inxp 4745 | . . . . . . . . . 10 | |
11 | inv1 3451 | . . . . . . . . . . 11 | |
12 | incom 3319 | . . . . . . . . . . . 12 | |
13 | inv1 3451 | . . . . . . . . . . . 12 | |
14 | 12, 13 | eqtri 2191 | . . . . . . . . . . 11 |
15 | 11, 14 | xpeq12i 4633 | . . . . . . . . . 10 |
16 | 10, 15 | eqtr2i 2192 | . . . . . . . . 9 |
17 | 16 | ineq2i 3325 | . . . . . . . 8 |
18 | in32 3339 | . . . . . . . 8 | |
19 | xpindir 4747 | . . . . . . . . . . . 12 | |
20 | 19 | ineq2i 3325 | . . . . . . . . . . 11 |
21 | inass 3337 | . . . . . . . . . . 11 | |
22 | 20, 21 | eqtr4i 2194 | . . . . . . . . . 10 |
23 | 22 | ineq1i 3324 | . . . . . . . . 9 |
24 | inass 3337 | . . . . . . . . 9 | |
25 | 23, 24 | eqtri 2191 | . . . . . . . 8 |
26 | 17, 18, 25 | 3eqtr4i 2201 | . . . . . . 7 |
27 | 26 | cnveqi 4786 | . . . . . 6 |
28 | df-res 4623 | . . . . . . 7 | |
29 | cnvxp 5029 | . . . . . . . 8 | |
30 | 29 | ineq2i 3325 | . . . . . . 7 |
31 | 28, 30 | eqtr4i 2194 | . . . . . 6 |
32 | 9, 27, 31 | 3eqtr4ri 2202 | . . . . 5 |
33 | 32 | dmeqi 4812 | . . . 4 |
34 | incom 3319 | . . . . 5 | |
35 | dmres 4912 | . . . . 5 | |
36 | df-rn 4622 | . . . . . 6 | |
37 | 36 | ineq1i 3324 | . . . . 5 |
38 | 34, 35, 37 | 3eqtr4ri 2202 | . . . 4 |
39 | df-rn 4622 | . . . 4 | |
40 | 33, 38, 39 | 3eqtr4ri 2202 | . . 3 |
41 | 8, 40 | eqtr4i 2194 | . 2 |
42 | 2, 3, 41 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 cvv 2730 cin 3120 cxp 4609 ccnv 4610 cdm 4611 crn 4612 cres 4613 cima 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: ecinxp 6588 |
Copyright terms: Public domain | W3C validator |