| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imainrect | Unicode version | ||
| Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| imainrect |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4685 |
. . 3
| |
| 2 | 1 | rneqi 4904 |
. 2
|
| 3 | df-ima 4686 |
. 2
| |
| 4 | df-ima 4686 |
. . . . 5
| |
| 5 | df-res 4685 |
. . . . . 6
| |
| 6 | 5 | rneqi 4904 |
. . . . 5
|
| 7 | 4, 6 | eqtri 2225 |
. . . 4
|
| 8 | 7 | ineq1i 3369 |
. . 3
|
| 9 | cnvin 5087 |
. . . . . 6
| |
| 10 | inxp 4810 |
. . . . . . . . . 10
| |
| 11 | inv1 3496 |
. . . . . . . . . . 11
| |
| 12 | incom 3364 |
. . . . . . . . . . . 12
| |
| 13 | inv1 3496 |
. . . . . . . . . . . 12
| |
| 14 | 12, 13 | eqtri 2225 |
. . . . . . . . . . 11
|
| 15 | 11, 14 | xpeq12i 4695 |
. . . . . . . . . 10
|
| 16 | 10, 15 | eqtr2i 2226 |
. . . . . . . . 9
|
| 17 | 16 | ineq2i 3370 |
. . . . . . . 8
|
| 18 | in32 3384 |
. . . . . . . 8
| |
| 19 | xpindir 4812 |
. . . . . . . . . . . 12
| |
| 20 | 19 | ineq2i 3370 |
. . . . . . . . . . 11
|
| 21 | inass 3382 |
. . . . . . . . . . 11
| |
| 22 | 20, 21 | eqtr4i 2228 |
. . . . . . . . . 10
|
| 23 | 22 | ineq1i 3369 |
. . . . . . . . 9
|
| 24 | inass 3382 |
. . . . . . . . 9
| |
| 25 | 23, 24 | eqtri 2225 |
. . . . . . . 8
|
| 26 | 17, 18, 25 | 3eqtr4i 2235 |
. . . . . . 7
|
| 27 | 26 | cnveqi 4851 |
. . . . . 6
|
| 28 | df-res 4685 |
. . . . . . 7
| |
| 29 | cnvxp 5098 |
. . . . . . . 8
| |
| 30 | 29 | ineq2i 3370 |
. . . . . . 7
|
| 31 | 28, 30 | eqtr4i 2228 |
. . . . . 6
|
| 32 | 9, 27, 31 | 3eqtr4ri 2236 |
. . . . 5
|
| 33 | 32 | dmeqi 4877 |
. . . 4
|
| 34 | incom 3364 |
. . . . 5
| |
| 35 | dmres 4977 |
. . . . 5
| |
| 36 | df-rn 4684 |
. . . . . 6
| |
| 37 | 36 | ineq1i 3369 |
. . . . 5
|
| 38 | 34, 35, 37 | 3eqtr4ri 2236 |
. . . 4
|
| 39 | df-rn 4684 |
. . . 4
| |
| 40 | 33, 38, 39 | 3eqtr4ri 2236 |
. . 3
|
| 41 | 8, 40 | eqtr4i 2228 |
. 2
|
| 42 | 2, 3, 41 | 3eqtr4i 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4679 df-rel 4680 df-cnv 4681 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 |
| This theorem is referenced by: ecinxp 6687 |
| Copyright terms: Public domain | W3C validator |