Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imainrect | Unicode version |
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
Ref | Expression |
---|---|
imainrect |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4616 | . . 3 | |
2 | 1 | rneqi 4832 | . 2 |
3 | df-ima 4617 | . 2 | |
4 | df-ima 4617 | . . . . 5 | |
5 | df-res 4616 | . . . . . 6 | |
6 | 5 | rneqi 4832 | . . . . 5 |
7 | 4, 6 | eqtri 2186 | . . . 4 |
8 | 7 | ineq1i 3319 | . . 3 |
9 | cnvin 5011 | . . . . . 6 | |
10 | inxp 4738 | . . . . . . . . . 10 | |
11 | inv1 3445 | . . . . . . . . . . 11 | |
12 | incom 3314 | . . . . . . . . . . . 12 | |
13 | inv1 3445 | . . . . . . . . . . . 12 | |
14 | 12, 13 | eqtri 2186 | . . . . . . . . . . 11 |
15 | 11, 14 | xpeq12i 4626 | . . . . . . . . . 10 |
16 | 10, 15 | eqtr2i 2187 | . . . . . . . . 9 |
17 | 16 | ineq2i 3320 | . . . . . . . 8 |
18 | in32 3334 | . . . . . . . 8 | |
19 | xpindir 4740 | . . . . . . . . . . . 12 | |
20 | 19 | ineq2i 3320 | . . . . . . . . . . 11 |
21 | inass 3332 | . . . . . . . . . . 11 | |
22 | 20, 21 | eqtr4i 2189 | . . . . . . . . . 10 |
23 | 22 | ineq1i 3319 | . . . . . . . . 9 |
24 | inass 3332 | . . . . . . . . 9 | |
25 | 23, 24 | eqtri 2186 | . . . . . . . 8 |
26 | 17, 18, 25 | 3eqtr4i 2196 | . . . . . . 7 |
27 | 26 | cnveqi 4779 | . . . . . 6 |
28 | df-res 4616 | . . . . . . 7 | |
29 | cnvxp 5022 | . . . . . . . 8 | |
30 | 29 | ineq2i 3320 | . . . . . . 7 |
31 | 28, 30 | eqtr4i 2189 | . . . . . 6 |
32 | 9, 27, 31 | 3eqtr4ri 2197 | . . . . 5 |
33 | 32 | dmeqi 4805 | . . . 4 |
34 | incom 3314 | . . . . 5 | |
35 | dmres 4905 | . . . . 5 | |
36 | df-rn 4615 | . . . . . 6 | |
37 | 36 | ineq1i 3319 | . . . . 5 |
38 | 34, 35, 37 | 3eqtr4ri 2197 | . . . 4 |
39 | df-rn 4615 | . . . 4 | |
40 | 33, 38, 39 | 3eqtr4ri 2197 | . . 3 |
41 | 8, 40 | eqtr4i 2189 | . 2 |
42 | 2, 3, 41 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 cvv 2726 cin 3115 cxp 4602 ccnv 4603 cdm 4604 crn 4605 cres 4606 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: ecinxp 6576 |
Copyright terms: Public domain | W3C validator |