| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imainrect | Unicode version | ||
| Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| imainrect | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-res 4675 | 
. . 3
 | |
| 2 | 1 | rneqi 4894 | 
. 2
 | 
| 3 | df-ima 4676 | 
. 2
 | |
| 4 | df-ima 4676 | 
. . . . 5
 | |
| 5 | df-res 4675 | 
. . . . . 6
 | |
| 6 | 5 | rneqi 4894 | 
. . . . 5
 | 
| 7 | 4, 6 | eqtri 2217 | 
. . . 4
 | 
| 8 | 7 | ineq1i 3360 | 
. . 3
 | 
| 9 | cnvin 5077 | 
. . . . . 6
 | |
| 10 | inxp 4800 | 
. . . . . . . . . 10
 | |
| 11 | inv1 3487 | 
. . . . . . . . . . 11
 | |
| 12 | incom 3355 | 
. . . . . . . . . . . 12
 | |
| 13 | inv1 3487 | 
. . . . . . . . . . . 12
 | |
| 14 | 12, 13 | eqtri 2217 | 
. . . . . . . . . . 11
 | 
| 15 | 11, 14 | xpeq12i 4685 | 
. . . . . . . . . 10
 | 
| 16 | 10, 15 | eqtr2i 2218 | 
. . . . . . . . 9
 | 
| 17 | 16 | ineq2i 3361 | 
. . . . . . . 8
 | 
| 18 | in32 3375 | 
. . . . . . . 8
 | |
| 19 | xpindir 4802 | 
. . . . . . . . . . . 12
 | |
| 20 | 19 | ineq2i 3361 | 
. . . . . . . . . . 11
 | 
| 21 | inass 3373 | 
. . . . . . . . . . 11
 | |
| 22 | 20, 21 | eqtr4i 2220 | 
. . . . . . . . . 10
 | 
| 23 | 22 | ineq1i 3360 | 
. . . . . . . . 9
 | 
| 24 | inass 3373 | 
. . . . . . . . 9
 | |
| 25 | 23, 24 | eqtri 2217 | 
. . . . . . . 8
 | 
| 26 | 17, 18, 25 | 3eqtr4i 2227 | 
. . . . . . 7
 | 
| 27 | 26 | cnveqi 4841 | 
. . . . . 6
 | 
| 28 | df-res 4675 | 
. . . . . . 7
 | |
| 29 | cnvxp 5088 | 
. . . . . . . 8
 | |
| 30 | 29 | ineq2i 3361 | 
. . . . . . 7
 | 
| 31 | 28, 30 | eqtr4i 2220 | 
. . . . . 6
 | 
| 32 | 9, 27, 31 | 3eqtr4ri 2228 | 
. . . . 5
 | 
| 33 | 32 | dmeqi 4867 | 
. . . 4
 | 
| 34 | incom 3355 | 
. . . . 5
 | |
| 35 | dmres 4967 | 
. . . . 5
 | |
| 36 | df-rn 4674 | 
. . . . . 6
 | |
| 37 | 36 | ineq1i 3360 | 
. . . . 5
 | 
| 38 | 34, 35, 37 | 3eqtr4ri 2228 | 
. . . 4
 | 
| 39 | df-rn 4674 | 
. . . 4
 | |
| 40 | 33, 38, 39 | 3eqtr4ri 2228 | 
. . 3
 | 
| 41 | 8, 40 | eqtr4i 2220 | 
. 2
 | 
| 42 | 2, 3, 41 | 3eqtr4i 2227 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 | 
| This theorem is referenced by: ecinxp 6669 | 
| Copyright terms: Public domain | W3C validator |