ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in32 GIF version

Theorem in32 3416
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
in32 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ 𝐵)

Proof of Theorem in32
StepHypRef Expression
1 inass 3414 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
2 in12 3415 . 2 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
3 incom 3396 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐴𝐶) ∩ 𝐵)
41, 2, 33eqtri 2254 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  in13  3417  inrot  3419  imainrect  5173  setsfun  13062  setsfun0  13063
  Copyright terms: Public domain W3C validator