Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 | |
3eqtri.2 | |
3eqtri.3 |
Ref | Expression |
---|---|
3eqtri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . 2 | |
2 | 3eqtri.2 | . . 3 | |
3 | 3eqtri.3 | . . 3 | |
4 | 2, 3 | eqtri 2191 | . 2 |
5 | 1, 4 | eqtri 2191 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: csbid 3057 un23 3286 in32 3339 dfrab2 3402 difun2 3493 tpidm23 3682 unisn 3810 dfiunv2 3907 uniop 4238 suc0 4394 unisuc 4396 iunsuc 4403 xpun 4670 dfrn2 4797 dfdmf 4802 dfrnf 4850 res0 4893 resres 4901 xpssres 4924 dfima2 4953 imai 4965 ima0 4968 imaundir 5022 xpima1 5055 xpima2m 5056 dmresv 5067 rescnvcnv 5071 dmtpop 5084 rnsnopg 5087 resdmres 5100 dmmpt 5104 dmco 5117 co01 5123 fpr 5676 fmptpr 5686 fvsnun2 5692 mpo0 5921 dmoprab 5932 rnoprab 5934 ov6g 5988 1st0 6121 2nd0 6122 dfmpo 6200 algrflem 6206 dftpos2 6238 tposoprab 6257 tposmpo 6258 tfrlem8 6295 frecsuc 6384 df2o3 6407 sbthlemi5 6936 sup00 6978 casedm 7061 djudm 7080 axi2m1 7830 2p2e4 8998 numsuc 9349 numsucc 9375 decmul10add 9404 5p5e10 9406 6p4e10 9407 7p3e10 9410 xnegmnf 9779 pnfaddmnf 9800 fz0tp 10071 fz0to3un2pr 10072 fzo0to2pr 10167 fzo0to3tp 10168 fzo0to42pr 10169 0tonninf 10388 1tonninf 10389 inftonninf 10390 sq4e2t8 10566 i4 10571 fac1 10656 fac3 10659 abs0 11015 absi 11016 trirecip 11457 geoihalfsum 11478 esum 11618 tan0 11687 ef01bndlem 11712 3dvdsdec 11817 3dvds2dec 11818 3lcm2e6woprm 12033 6lcm4e12 12034 ennnfonelem1 12355 ndxarg 12432 setsfun 12444 setsfun0 12445 txbasval 13026 cnmpt1st 13047 cnmpt2nd 13048 dvmptidcn 13437 cos2pi 13484 tan4thpi 13521 sincos6thpi 13522 sqrt2cxp2logb9e3 13652 012of 13993 2o01f 13994 pwf1oexmid 13997 isomninnlem 14027 iswomninnlem 14046 ismkvnnlem 14049 |
Copyright terms: Public domain | W3C validator |