Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 | |
3eqtri.2 | |
3eqtri.3 |
Ref | Expression |
---|---|
3eqtri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 | . 2 | |
2 | 3eqtri.2 | . . 3 | |
3 | 3eqtri.3 | . . 3 | |
4 | 2, 3 | eqtri 2186 | . 2 |
5 | 1, 4 | eqtri 2186 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: csbid 3052 un23 3280 in32 3333 dfrab2 3396 difun2 3487 tpidm23 3676 unisn 3804 dfiunv2 3901 uniop 4232 suc0 4388 unisuc 4390 iunsuc 4397 xpun 4664 dfrn2 4791 dfdmf 4796 dfrnf 4844 res0 4887 resres 4895 xpssres 4918 dfima2 4947 imai 4959 ima0 4962 imaundir 5016 xpima1 5049 xpima2m 5050 dmresv 5061 rescnvcnv 5065 dmtpop 5078 rnsnopg 5081 resdmres 5094 dmmpt 5098 dmco 5111 co01 5117 fpr 5666 fmptpr 5676 fvsnun2 5682 mpo0 5908 dmoprab 5919 rnoprab 5921 ov6g 5975 1st0 6109 2nd0 6110 dfmpo 6187 algrflem 6193 dftpos2 6225 tposoprab 6244 tposmpo 6245 tfrlem8 6282 frecsuc 6371 df2o3 6394 sbthlemi5 6922 sup00 6964 casedm 7047 djudm 7066 axi2m1 7812 2p2e4 8980 numsuc 9331 numsucc 9357 decmul10add 9386 5p5e10 9388 6p4e10 9389 7p3e10 9392 xnegmnf 9761 pnfaddmnf 9782 fz0tp 10053 fz0to3un2pr 10054 fzo0to2pr 10149 fzo0to3tp 10150 fzo0to42pr 10151 0tonninf 10370 1tonninf 10371 inftonninf 10372 sq4e2t8 10548 i4 10553 fac1 10638 fac3 10641 abs0 10996 absi 10997 trirecip 11438 geoihalfsum 11459 esum 11599 tan0 11668 ef01bndlem 11693 3dvdsdec 11798 3dvds2dec 11799 3lcm2e6woprm 12014 6lcm4e12 12015 ennnfonelem1 12336 ndxarg 12413 setsfun 12425 setsfun0 12426 txbasval 12867 cnmpt1st 12888 cnmpt2nd 12889 dvmptidcn 13278 cos2pi 13325 tan4thpi 13362 sincos6thpi 13363 sqrt2cxp2logb9e3 13493 012of 13835 2o01f 13836 pwf1oexmid 13839 isomninnlem 13869 iswomninnlem 13888 ismkvnnlem 13891 |
Copyright terms: Public domain | W3C validator |