![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
3eqtri.1 |
![]() ![]() ![]() ![]() |
3eqtri.2 |
![]() ![]() ![]() ![]() |
3eqtri.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtri.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | 3eqtri.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 3eqtri.3 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtri 2198 |
. 2
![]() ![]() ![]() ![]() |
5 | 1, 4 | eqtri 2198 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: csbid 3066 un23 3295 in32 3348 dfrab2 3411 difun2 3503 tpidm23 3694 unisn 3826 dfiunv2 3923 uniop 4256 suc0 4412 unisuc 4414 iunsuc 4421 xpun 4688 dfrn2 4816 dfdmf 4821 dfrnf 4869 res0 4912 resres 4920 xpssres 4943 dfima2 4973 imai 4985 ima0 4988 imaundir 5043 xpima1 5076 xpima2m 5077 dmresv 5088 rescnvcnv 5092 dmtpop 5105 rnsnopg 5108 resdmres 5121 dmmpt 5125 dmco 5138 co01 5144 fpr 5699 fmptpr 5709 fvsnun2 5715 mpo0 5945 dmoprab 5956 rnoprab 5958 ov6g 6012 1st0 6145 2nd0 6146 dfmpo 6224 algrflem 6230 dftpos2 6262 tposoprab 6281 tposmpo 6282 tfrlem8 6319 frecsuc 6408 df2o3 6431 sbthlemi5 6960 sup00 7002 casedm 7085 djudm 7104 axi2m1 7874 2p2e4 9046 numsuc 9397 numsucc 9423 decmul10add 9452 5p5e10 9454 6p4e10 9455 7p3e10 9458 xnegmnf 9829 pnfaddmnf 9850 fz0tp 10122 fz0to3un2pr 10123 fzo0to2pr 10218 fzo0to3tp 10219 fzo0to42pr 10220 0tonninf 10439 1tonninf 10440 inftonninf 10441 sq4e2t8 10618 i4 10623 fac1 10709 fac3 10712 abs0 11067 absi 11068 trirecip 11509 geoihalfsum 11530 esum 11670 tan0 11739 ef01bndlem 11764 3dvdsdec 11870 3dvds2dec 11871 3lcm2e6woprm 12086 6lcm4e12 12087 ennnfonelem1 12408 ndxarg 12485 setsfun 12497 setsfun0 12498 txbasval 13770 cnmpt1st 13791 cnmpt2nd 13792 dvmptidcn 14181 cos2pi 14228 tan4thpi 14265 sincos6thpi 14266 sqrt2cxp2logb9e3 14396 012of 14748 2o01f 14749 pwf1oexmid 14752 isomninnlem 14781 iswomninnlem 14800 ismkvnnlem 14803 |
Copyright terms: Public domain | W3C validator |