ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmdfsn Unicode version

Theorem resdmdfsn 5021
Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
resdmdfsn  |-  ( Rel 
R  ->  ( R  |`  ( _V  \  { X } ) )  =  ( R  |`  ( dom  R  \  { X } ) ) )

Proof of Theorem resdmdfsn
StepHypRef Expression
1 resindm 5020 . 2  |-  ( Rel 
R  ->  ( R  |`  ( ( _V  \  { X } )  i^i 
dom  R ) )  =  ( R  |`  ( _V  \  { X } ) ) )
2 indif1 3426 . . . 4  |-  ( ( _V  \  { X } )  i^i  dom  R )  =  ( ( _V  i^i  dom  R
)  \  { X } )
3 incom 3373 . . . . . 6  |-  ( _V 
i^i  dom  R )  =  ( dom  R  i^i  _V )
4 inv1 3505 . . . . . 6  |-  ( dom 
R  i^i  _V )  =  dom  R
53, 4eqtri 2228 . . . . 5  |-  ( _V 
i^i  dom  R )  =  dom  R
65difeq1i 3295 . . . 4  |-  ( ( _V  i^i  dom  R
)  \  { X } )  =  ( dom  R  \  { X } )
72, 6eqtri 2228 . . 3  |-  ( ( _V  \  { X } )  i^i  dom  R )  =  ( dom 
R  \  { X } )
87reseq2i 4975 . 2  |-  ( R  |`  ( ( _V  \  { X } )  i^i 
dom  R ) )  =  ( R  |`  ( dom  R  \  { X } ) )
91, 8eqtr3di 2255 1  |-  ( Rel 
R  ->  ( R  |`  ( _V  \  { X } ) )  =  ( R  |`  ( dom  R  \  { X } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   _Vcvv 2776    \ cdif 3171    i^i cin 3173   {csn 3643   dom cdm 4693    |` cres 4695   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-dm 4703  df-res 4705
This theorem is referenced by:  funresdfunsnss  5810  funresdfunsndc  6615
  Copyright terms: Public domain W3C validator