ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmdfsn Unicode version

Theorem resdmdfsn 4990
Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
resdmdfsn  |-  ( Rel 
R  ->  ( R  |`  ( _V  \  { X } ) )  =  ( R  |`  ( dom  R  \  { X } ) ) )

Proof of Theorem resdmdfsn
StepHypRef Expression
1 resindm 4989 . 2  |-  ( Rel 
R  ->  ( R  |`  ( ( _V  \  { X } )  i^i 
dom  R ) )  =  ( R  |`  ( _V  \  { X } ) ) )
2 indif1 3409 . . . 4  |-  ( ( _V  \  { X } )  i^i  dom  R )  =  ( ( _V  i^i  dom  R
)  \  { X } )
3 incom 3356 . . . . . 6  |-  ( _V 
i^i  dom  R )  =  ( dom  R  i^i  _V )
4 inv1 3488 . . . . . 6  |-  ( dom 
R  i^i  _V )  =  dom  R
53, 4eqtri 2217 . . . . 5  |-  ( _V 
i^i  dom  R )  =  dom  R
65difeq1i 3278 . . . 4  |-  ( ( _V  i^i  dom  R
)  \  { X } )  =  ( dom  R  \  { X } )
72, 6eqtri 2217 . . 3  |-  ( ( _V  \  { X } )  i^i  dom  R )  =  ( dom 
R  \  { X } )
87reseq2i 4944 . 2  |-  ( R  |`  ( ( _V  \  { X } )  i^i 
dom  R ) )  =  ( R  |`  ( dom  R  \  { X } ) )
91, 8eqtr3di 2244 1  |-  ( Rel 
R  ->  ( R  |`  ( _V  \  { X } ) )  =  ( R  |`  ( dom  R  \  { X } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2763    \ cdif 3154    i^i cin 3156   {csn 3623   dom cdm 4664    |` cres 4666   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-dm 4674  df-res 4676
This theorem is referenced by:  funresdfunsnss  5768  funresdfunsndc  6573
  Copyright terms: Public domain W3C validator