ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdmdfsn Unicode version

Theorem resdmdfsn 4862
Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
resdmdfsn  |-  ( Rel 
R  ->  ( R  |`  ( _V  \  { X } ) )  =  ( R  |`  ( dom  R  \  { X } ) ) )

Proof of Theorem resdmdfsn
StepHypRef Expression
1 indif1 3321 . . . 4  |-  ( ( _V  \  { X } )  i^i  dom  R )  =  ( ( _V  i^i  dom  R
)  \  { X } )
2 incom 3268 . . . . . 6  |-  ( _V 
i^i  dom  R )  =  ( dom  R  i^i  _V )
3 inv1 3399 . . . . . 6  |-  ( dom 
R  i^i  _V )  =  dom  R
42, 3eqtri 2160 . . . . 5  |-  ( _V 
i^i  dom  R )  =  dom  R
54difeq1i 3190 . . . 4  |-  ( ( _V  i^i  dom  R
)  \  { X } )  =  ( dom  R  \  { X } )
61, 5eqtri 2160 . . 3  |-  ( ( _V  \  { X } )  i^i  dom  R )  =  ( dom 
R  \  { X } )
76reseq2i 4816 . 2  |-  ( R  |`  ( ( _V  \  { X } )  i^i 
dom  R ) )  =  ( R  |`  ( dom  R  \  { X } ) )
8 resindm 4861 . 2  |-  ( Rel 
R  ->  ( R  |`  ( ( _V  \  { X } )  i^i 
dom  R ) )  =  ( R  |`  ( _V  \  { X } ) ) )
97, 8syl5reqr 2187 1  |-  ( Rel 
R  ->  ( R  |`  ( _V  \  { X } ) )  =  ( R  |`  ( dom  R  \  { X } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331   _Vcvv 2686    \ cdif 3068    i^i cin 3070   {csn 3527   dom cdm 4539    |` cres 4541   Rel wrel 4544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-dm 4549  df-res 4551
This theorem is referenced by:  funresdfunsnss  5623  funresdfunsndc  6402
  Copyright terms: Public domain W3C validator