Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > indif1 | GIF version |
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
indif1 | ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 3371 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐵 ∩ 𝐴) ∖ 𝐶) | |
2 | incom 3319 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) ∩ 𝐵) | |
3 | incom 3319 | . . 3 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
4 | 3 | difeq1i 3241 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∖ 𝐶) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
5 | 1, 2, 4 | 3eqtr3i 2199 | 1 ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∖ cdif 3118 ∩ cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-dif 3123 df-in 3127 |
This theorem is referenced by: resdifcom 4909 resdmdfsn 4934 |
Copyright terms: Public domain | W3C validator |