![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > indif1 | GIF version |
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
indif1 | ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 3403 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐵 ∩ 𝐴) ∖ 𝐶) | |
2 | incom 3351 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) ∩ 𝐵) | |
3 | incom 3351 | . . 3 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
4 | 3 | difeq1i 3273 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∖ 𝐶) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
5 | 1, 2, 4 | 3eqtr3i 2222 | 1 ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∖ cdif 3150 ∩ cin 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-dif 3155 df-in 3159 |
This theorem is referenced by: resdifcom 4960 resdmdfsn 4985 |
Copyright terms: Public domain | W3C validator |