ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indif1 GIF version

Theorem indif1 3449
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1 ((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem indif1
StepHypRef Expression
1 indif2 3448 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐵𝐴) ∖ 𝐶)
2 incom 3396 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐴𝐶) ∩ 𝐵)
3 incom 3396 . . 3 (𝐵𝐴) = (𝐴𝐵)
43difeq1i 3318 . 2 ((𝐵𝐴) ∖ 𝐶) = ((𝐴𝐵) ∖ 𝐶)
51, 2, 43eqtr3i 2258 1 ((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cdif 3194  cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203
This theorem is referenced by:  resdifcom  5022  resdmdfsn  5047
  Copyright terms: Public domain W3C validator