ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inf00 Unicode version

Theorem inf00 6996
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
inf00  |- inf ( B ,  (/) ,  R )  =  (/)

Proof of Theorem inf00
StepHypRef Expression
1 df-inf 6950 . 2  |- inf ( B ,  (/) ,  R )  =  sup ( B ,  (/) ,  `' R
)
2 sup00 6968 . 2  |-  sup ( B ,  (/) ,  `' R )  =  (/)
31, 2eqtri 2186 1  |- inf ( B ,  (/) ,  R )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1343   (/)c0 3409   `'ccnv 4603   supcsup 6947  infcinf 6948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-uni 3790  df-sup 6949  df-inf 6950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator