ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsnti Unicode version

Theorem infsnti 7019
Description: The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infsnti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infsnti.b  |-  ( ph  ->  B  e.  A )
Assertion
Ref Expression
infsnti  |-  ( ph  -> inf ( { B } ,  A ,  R )  =  B )
Distinct variable groups:    u, A, v   
u, B, v    u, R, v    ph, u, v

Proof of Theorem infsnti
StepHypRef Expression
1 df-inf 6974 . 2  |- inf ( { B } ,  A ,  R )  =  sup ( { B } ,  A ,  `' R
)
2 infsnti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
32cnvti 7008 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
4 infsnti.b . . 3  |-  ( ph  ->  B  e.  A )
53, 4supsnti 6994 . 2  |-  ( ph  ->  sup ( { B } ,  A ,  `' R )  =  B )
61, 5eqtrid 2220 1  |-  ( ph  -> inf ( { B } ,  A ,  R )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   {csn 3589   class class class wbr 3998   `'ccnv 4619   supcsup 6971  infcinf 6972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-cnv 4628  df-iota 5170  df-riota 5821  df-sup 6973  df-inf 6974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator