Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infsnti | Unicode version |
Description: The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.) |
Ref | Expression |
---|---|
infsnti.ti | |
infsnti.b |
Ref | Expression |
---|---|
infsnti | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6974 | . 2 inf | |
2 | infsnti.ti | . . . 4 | |
3 | 2 | cnvti 7008 | . . 3 |
4 | infsnti.b | . . 3 | |
5 | 3, 4 | supsnti 6994 | . 2 |
6 | 1, 5 | eqtrid 2220 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wceq 1353 wcel 2146 csn 3589 class class class wbr 3998 ccnv 4619 csup 6971 infcinf 6972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-cnv 4628 df-iota 5170 df-riota 5821 df-sup 6973 df-inf 6974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |