ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsnti Unicode version

Theorem infsnti 6995
Description: The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infsnti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infsnti.b  |-  ( ph  ->  B  e.  A )
Assertion
Ref Expression
infsnti  |-  ( ph  -> inf ( { B } ,  A ,  R )  =  B )
Distinct variable groups:    u, A, v   
u, B, v    u, R, v    ph, u, v

Proof of Theorem infsnti
StepHypRef Expression
1 df-inf 6950 . 2  |- inf ( { B } ,  A ,  R )  =  sup ( { B } ,  A ,  `' R
)
2 infsnti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
32cnvti 6984 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
4 infsnti.b . . 3  |-  ( ph  ->  B  e.  A )
53, 4supsnti 6970 . 2  |-  ( ph  ->  sup ( { B } ,  A ,  `' R )  =  B )
61, 5syl5eq 2211 1  |-  ( ph  -> inf ( { B } ,  A ,  R )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {csn 3576   class class class wbr 3982   `'ccnv 4603   supcsup 6947  infcinf 6948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-cnv 4612  df-iota 5153  df-riota 5798  df-sup 6949  df-inf 6950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator