ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sup00 Unicode version

Theorem sup00 7105
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup00  |-  sup ( B ,  (/) ,  R
)  =  (/)

Proof of Theorem sup00
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 7086 . 2  |-  sup ( B ,  (/) ,  R
)  =  U. {
x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }
2 rab0 3489 . . 3  |-  { x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  (/)
32unieqi 3860 . 2  |-  U. {
x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. (/)
4 uni0 3877 . 2  |-  U. (/)  =  (/)
51, 3, 43eqtri 2230 1  |-  sup ( B ,  (/) ,  R
)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373   A.wral 2484   E.wrex 2485   {crab 2488   (/)c0 3460   U.cuni 3850   class class class wbr 4044   supcsup 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-uni 3851  df-sup 7086
This theorem is referenced by:  inf00  7133
  Copyright terms: Public domain W3C validator