Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sup00 | Unicode version |
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
sup00 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup 6920 | . 2 | |
2 | rab0 3422 | . . 3 | |
3 | 2 | unieqi 3782 | . 2 |
4 | uni0 3799 | . 2 | |
5 | 1, 3, 4 | 3eqtri 2182 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1335 wral 2435 wrex 2436 crab 2439 c0 3394 cuni 3772 class class class wbr 3965 csup 6918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-uni 3773 df-sup 6920 |
This theorem is referenced by: inf00 6967 |
Copyright terms: Public domain | W3C validator |