ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sup00 Unicode version

Theorem sup00 6980
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup00  |-  sup ( B ,  (/) ,  R
)  =  (/)

Proof of Theorem sup00
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 6961 . 2  |-  sup ( B ,  (/) ,  R
)  =  U. {
x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }
2 rab0 3443 . . 3  |-  { x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  (/)
32unieqi 3806 . 2  |-  U. {
x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. (/)
4 uni0 3823 . 2  |-  U. (/)  =  (/)
51, 3, 43eqtri 2195 1  |-  sup ( B ,  (/) ,  R
)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1348   A.wral 2448   E.wrex 2449   {crab 2452   (/)c0 3414   U.cuni 3796   class class class wbr 3989   supcsup 6959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-uni 3797  df-sup 6961
This theorem is referenced by:  inf00  7008
  Copyright terms: Public domain W3C validator