ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sup00 Unicode version

Theorem sup00 7062
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup00  |-  sup ( B ,  (/) ,  R
)  =  (/)

Proof of Theorem sup00
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 7043 . 2  |-  sup ( B ,  (/) ,  R
)  =  U. {
x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }
2 rab0 3475 . . 3  |-  { x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  (/)
32unieqi 3845 . 2  |-  U. {
x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. (/)
4 uni0 3862 . 2  |-  U. (/)  =  (/)
51, 3, 43eqtri 2218 1  |-  sup ( B ,  (/) ,  R
)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   A.wral 2472   E.wrex 2473   {crab 2476   (/)c0 3446   U.cuni 3835   class class class wbr 4029   supcsup 7041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-uni 3836  df-sup 7043
This theorem is referenced by:  inf00  7090
  Copyright terms: Public domain W3C validator