ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sup00 Unicode version

Theorem sup00 6968
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup00  |-  sup ( B ,  (/) ,  R
)  =  (/)

Proof of Theorem sup00
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 6949 . 2  |-  sup ( B ,  (/) ,  R
)  =  U. {
x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }
2 rab0 3437 . . 3  |-  { x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  (/)
32unieqi 3799 . 2  |-  U. {
x  e.  (/)  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  (/)  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. (/)
4 uni0 3816 . 2  |-  U. (/)  =  (/)
51, 3, 43eqtri 2190 1  |-  sup ( B ,  (/) ,  R
)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343   A.wral 2444   E.wrex 2445   {crab 2448   (/)c0 3409   U.cuni 3789   class class class wbr 3982   supcsup 6947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-uni 3790  df-sup 6949
This theorem is referenced by:  inf00  6996
  Copyright terms: Public domain W3C validator