HomeHome Intuitionistic Logic Explorer
Theorem List (p. 71 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7001-7100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminflbti 7001* An infimum is a lower bound. See also infclti 7000 and infglbti 7002. (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  ( C  e.  B  ->  -.  C Rinf ( B ,  A ,  R ) ) )
 
Theoreminfglbti 7002* An infimum is the greatest lower bound. See also infclti 7000 and inflbti 7001. (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\ inf ( B ,  A ,  R ) R C )  ->  E. z  e.  B  z R C ) )
 
Theoreminfnlbti 7003* A lower bound is not greater than the infimum. (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\  A. z  e.  B  -.  z R C ) 
 ->  -. inf ( B ,  A ,  R ) R C ) )
 
Theoreminfminti 7004* The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  C  e.  B )   &    |-  (
 ( ph  /\  y  e.  B )  ->  -.  y R C )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
 
Theoreminfmoti 7005* Any class  B has at most one infimum in  A (where  R is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
 
Theoreminfeuti 7006* An infimum is unique. (Contributed by Jim Kingdon, 19-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  E! x  e.  A  (
 A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
 
Theoreminfsnti 7007* The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  -> inf ( { B } ,  A ,  R )  =  B )
 
Theoreminf00 7008 The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
 |- inf
 ( B ,  (/) ,  R )  =  (/)
 
Theoreminfisoti 7009* Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )   &    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
 
Theoremsupex2g 7010 Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  C  ->  sup ( B ,  A ,  R )  e.  _V )
 
Theoreminfex2g 7011 Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
 |-  ( A  e.  C  -> inf ( B ,  A ,  R )  e.  _V )
 
2.6.35  Ordinal isomorphism
 
Theoremordiso2 7012 Generalize ordiso 7013 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( F  Isom  _E 
 ,  _E  ( A ,  B )  /\  Ord 
 A  /\  Ord  B ) 
 ->  A  =  B )
 
Theoremordiso 7013* Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B 
 <-> 
 E. f  f  Isom  _E 
 ,  _E  ( A ,  B ) ) )
 
2.6.36  Disjoint union
 
2.6.36.1  Disjoint union
 
Syntaxcdju 7014 Extend class notation to include disjoint union of two classes.
 class  ( A B )
 
Definitiondf-dju 7015 Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of  A or  B, tagging each one with whether it came from  A or  B. (Contributed by Jim Kingdon, 20-Jun-2022.)
 |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )
 
Theoremdjueq12 7016 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A C )  =  ( B D ) )
 
Theoremdjueq1 7017 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
 |-  ( A  =  B  ->  ( A C )  =  ( B C )
 )
 
Theoremdjueq2 7018 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
 |-  ( A  =  B  ->  ( C A )  =  ( C B )
 )
 
Theoremnfdju 7019 Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A B )
 
Theoremdjuex 7020 The disjoint union of sets is a set. See also the more precise djuss 7047. (Contributed by AV, 28-Jun-2022.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )
 
Theoremdjuexb 7021 The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A B )  e.  _V )
 
2.6.36.2  Left and right injections of a disjoint union

In this section, we define the left and right injections of a disjoint union and prove their main properties. These injections are restrictions of the "template" functions inl and inr, which appear in most applications in the form  (inl  |`  A ) and  (inr  |`  B ).

 
Syntaxcinl 7022 Extend class notation to include left injection of a disjoint union.
 class inl
 
Syntaxcinr 7023 Extend class notation to include right injection of a disjoint union.
 class inr
 
Definitiondf-inl 7024 Left injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
 |- inl 
 =  ( x  e. 
 _V  |->  <. (/) ,  x >. )
 
Definitiondf-inr 7025 Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
 |- inr 
 =  ( x  e. 
 _V  |->  <. 1o ,  x >. )
 
Theoremdjulclr 7026 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
 |-  ( C  e.  A  ->  ( (inl  |`  A ) `
  C )  e.  ( A B )
 )
 
Theoremdjurclr 7027 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
 |-  ( C  e.  B  ->  ( (inr  |`  B ) `
  C )  e.  ( A B )
 )
 
Theoremdjulcl 7028 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
 |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B )
 )
 
Theoremdjurcl 7029 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
 |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B )
 )
 
Theoremdjuf1olem 7030* Lemma for djulf1o 7035 and djurf1o 7036. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
 |-  X  e.  _V   &    |-  F  =  ( x  e.  A  |->  <. X ,  x >. )   =>    |-  F : A -1-1-onto-> ( { X }  X.  A )
 
Theoremdjuf1olemr 7031* Lemma for djulf1or 7033 and djurf1or 7034. For a version of this lemma with  F defined on  A and no restriction in the conclusion, see djuf1olem 7030. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
 |-  X  e.  _V   &    |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )   =>    |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A )
 
Theoremdjulclb 7032 Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
 |-  ( C  e.  V  ->  ( C  e.  A  <->  (inl `  C )  e.  ( A B ) ) )
 
Theoremdjulf1or 7033 The left injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
 |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
 
Theoremdjurf1or 7034 The right injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
 |-  (inr  |`  A ) : A -1-1-onto-> ( { 1o }  X.  A )
 
Theoremdjulf1o 7035 The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
 |- inl : _V
 -1-1-onto-> ( { (/) }  X.  _V )
 
Theoremdjurf1o 7036 The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
 |- inr : _V
 -1-1-onto-> ( { 1o }  X.  _V )
 
Theoreminresflem 7037* Lemma for inlresf1 7038 and inrresf1 7039. (Contributed by BJ, 4-Jul-2022.)
 |-  F : A -1-1-onto-> ( { X }  X.  A )   &    |-  ( x  e.  A  ->  ( F `  x )  e.  B )   =>    |-  F : A -1-1-> B
 
Theoreminlresf1 7038 The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
 |-  (inl  |`  A ) : A -1-1-> ( A B )
 
Theoreminrresf1 7039 The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
 |-  (inr  |`  B ) : B -1-1-> ( A B )
 
Theoremdjuinr 7040 The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7070 and djufun 7081) while the simpler statement  |-  ( ran inl  i^i 
ran inr )  =  (/) is easily recovered from it by substituting  _V for both  A and  B as done in casefun 7062). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
 |-  ( ran  (inl  |`  A )  i^i  ran  (inr  |`  B ) )  =  (/)
 
Theoremdjuin 7041 The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
 |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)
 
Theoreminl11 7042 Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A )  =  (inl `  B )  <->  A  =  B ) )
 
Theoremdjuunr 7043 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.)
 |-  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )  =  ( A B )
 
Theoremdjuun 7044 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
 |-  ( (inl " A )  u.  (inr " B ) )  =  ( A B )
 
Theoremeldju 7045* Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
 |-  ( C  e.  ( A B )  <->  ( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `  x ) ) )
 
Theoremdjur 7046* A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
 |-  ( C  e.  ( A B )  <->  ( E. x  e.  A  C  =  (inl `  x )  \/  E. x  e.  B  C  =  (inr `  x )
 ) )
 
2.6.36.3  Universal property of the disjoint union
 
Theoremdjuss 7047 A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
 |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B ) )
 
Theoremeldju1st 7048 The first component of an element of a disjoint union is either  (/) or  1o. (Contributed by AV, 26-Jun-2022.)
 |-  ( X  e.  ( A B )  ->  (
 ( 1st `  X )  =  (/)  \/  ( 1st `  X )  =  1o ) )
 
Theoremeldju2ndl 7049 The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
 |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =  (/) )  ->  ( 2nd `  X )  e.  A )
 
Theoremeldju2ndr 7050 The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
 |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =/= 
 (/) )  ->  ( 2nd `  X )  e.  B )
 
Theorem1stinl 7051 The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
 |-  ( X  e.  V  ->  ( 1st `  (inl `  X ) )  =  (/) )
 
Theorem2ndinl 7052 The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
 |-  ( X  e.  V  ->  ( 2nd `  (inl `  X ) )  =  X )
 
Theorem1stinr 7053 The first component of the value of a right injection is  1o. (Contributed by AV, 27-Jun-2022.)
 |-  ( X  e.  V  ->  ( 1st `  (inr `  X ) )  =  1o )
 
Theorem2ndinr 7054 The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
 |-  ( X  e.  V  ->  ( 2nd `  (inr `  X ) )  =  X )
 
Theoremdjune 7055 Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =/=  (inr `  B ) )
 
Theoremupdjudhf 7056* The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
 |-  ( ph  ->  F : A --> C )   &    |-  ( ph  ->  G : B --> C )   &    |-  H  =  ( x  e.  ( A B )  |->  if (
 ( 1st `  x )  =  (/) ,  ( F `
  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )   =>    |-  ( ph  ->  H :
 ( A B ) --> C )
 
Theoremupdjudhcoinlf 7057* The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
 |-  ( ph  ->  F : A --> C )   &    |-  ( ph  ->  G : B --> C )   &    |-  H  =  ( x  e.  ( A B )  |->  if (
 ( 1st `  x )  =  (/) ,  ( F `
  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )   =>    |-  ( ph  ->  ( H  o.  (inl  |`  A ) )  =  F )
 
Theoremupdjudhcoinrg 7058* The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
 |-  ( ph  ->  F : A --> C )   &    |-  ( ph  ->  G : B --> C )   &    |-  H  =  ( x  e.  ( A B )  |->  if (
 ( 1st `  x )  =  (/) ,  ( F `
  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )   =>    |-  ( ph  ->  ( H  o.  (inr  |`  B ) )  =  G )
 
Theoremupdjud 7059* Universal property of the disjoint union. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.)
 |-  ( ph  ->  F : A --> C )   &    |-  ( ph  ->  G : B --> C )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  E! h ( h :
 ( A B ) --> C  /\  ( h  o.  (inl  |`  A ) )  =  F  /\  ( h  o.  (inr  |`  B ) )  =  G ) )
 
Syntaxcdjucase 7060 Syntax for the "case" construction.
 class case ( R ,  S )
 
Definitiondf-case 7061 The "case" construction: if  F : A --> X and  G : B --> X are functions, then case ( F ,  G
) : ( A B ) --> X is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7059. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
 |- case
 ( R ,  S )  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
 
Theoremcasefun 7062 The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
 |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  Fun  G )   =>    |-  ( ph  ->  Fun case ( F ,  G ) )
 
Theoremcasedm 7063 The domain of the "case" construction is the disjoint union of the domains. TODO (although less important):  |-  ran case ( F ,  G )  =  ( ran  F  u.  ran  G ). (Contributed by BJ, 10-Jul-2022.)
 |- 
 dom case ( F ,  G )  =  ( dom  F dom  G )
 
Theoremcaserel 7064 The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
 |- case
 ( R ,  S )  C_  ( ( dom 
 R dom  S )  X.  ( ran  R  u.  ran  S ) )
 
Theoremcasef 7065 The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
 |-  ( ph  ->  F : A --> X )   &    |-  ( ph  ->  G : B --> X )   =>    |-  ( ph  -> case ( F ,  G ) : ( A B ) --> X )
 
Theoremcaseinj 7066 The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
 |-  ( ph  ->  Fun  `' R )   &    |-  ( ph  ->  Fun  `' S )   &    |-  ( ph  ->  ( ran  R  i^i  ran  S )  =  (/) )   =>    |-  ( ph  ->  Fun  `'case ( R ,  S ) )
 
Theoremcasef1 7067 The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
 |-  ( ph  ->  F : A -1-1-> X )   &    |-  ( ph  ->  G : B -1-1-> X )   &    |-  ( ph  ->  ( ran  F  i^i  ran  G )  =  (/) )   =>    |-  ( ph  -> case ( F ,  G ) : ( A B ) -1-1-> X )
 
Theoremcaseinl 7068 Applying the "case" construction to a left injection. (Contributed by Jim Kingdon, 15-Mar-2023.)
 |-  ( ph  ->  F  Fn  B )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  (case ( F ,  G ) `  (inl `  A ) )  =  ( F `  A ) )
 
Theoremcaseinr 7069 Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
 |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A ) )
 
2.6.36.4  Dominance and equinumerosity properties of disjoint union
 
Theoremdjudom 7070 Dominance law for disjoint union. (Contributed by Jim Kingdon, 25-Jul-2022.)
 |-  ( ( A  ~<_  B  /\  C 
 ~<_  D )  ->  ( A C )  ~<_  ( B D ) )
 
Theoremomp1eomlem 7071* Lemma for omp1eom 7072. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  F  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl ` 
 U. x ) ) )   &    |-  S  =  ( x  e.  om  |->  suc 
 x )   &    |-  G  = case ( S ,  (  _I  |` 
 1o ) )   =>    |-  F : om -1-1-onto-> ( om 1o )
 
Theoremomp1eom 7072 Adding one to  om. (Contributed by Jim Kingdon, 10-Jul-2023.)
 |-  ( om 1o )  ~~  om
 
Theoremendjusym 7073 Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B ) 
 ~~  ( B A ) )
 
Theoremeninl 7074 Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( A  e.  V  ->  (inl " A )  ~~  A )
 
Theoremeninr 7075 Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( A  e.  V  ->  (inr " A )  ~~  A )
 
Theoremdifinfsnlem 7076* Lemma for difinfsn 7077. The case where we need to swap  B and  (inr `  (/) ) in building the mapping  G. (Contributed by Jim Kingdon, 9-Aug-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  F : ( om 1o ) -1-1-> A )   &    |-  ( ph  ->  ( F `  (inr `  (/) ) )  =/=  B )   &    |-  G  =  ( n  e.  om  |->  if (
 ( F `  (inl `  n ) )  =  B ,  ( F `
  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) ) )   =>    |-  ( ph  ->  G : om -1-1-> ( A  \  { B } ) )
 
Theoremdifinfsn 7077* An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
 |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A 
 \  { B }
 ) )
 
Theoremdifinfinf 7078* An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
 |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
 ~<_  ( A  \  B ) )
 
2.6.36.5  Older definition temporarily kept for comparison, to be deleted
 
Syntaxcdjud 7079 Syntax for the domain-disjoint-union of two relations.
 class  ( R ⊔d  S )
 
Definitiondf-djud 7080 The "domain-disjoint-union" of two relations: if  R  C_  ( A  X.  X
) and  S  C_  ( B  X.  X ) are two binary relations, then  ( R ⊔d  S ) is the binary relation from  ( A B ) to  X having the universal property of disjoint unions (see updjud 7059 in the case of functions).

Remark: the restrictions to 
dom  R (resp.  dom  S) are not necessary since extra stuff would be thrown away in the post-composition with  R (resp.  S), as in df-case 7061, but they are explicitly written for clarity. (Contributed by MC and BJ, 10-Jul-2022.)

 |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R ) )  u.  ( S  o.  `' (inr  |`  dom  S ) ) )
 
Theoremdjufun 7081 The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
 |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  Fun  G )   =>    |-  ( ph  ->  Fun  ( F ⊔d  G ) )
 
Theoremdjudm 7082 The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
 |- 
 dom  ( F ⊔d  G )  =  ( dom  F dom 
 G )
 
Theoremdjuinj 7083 The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
 |-  ( ph  ->  Fun  `' R )   &    |-  ( ph  ->  Fun  `' S )   &    |-  ( ph  ->  ( ran  R  i^i  ran  S )  =  (/) )   =>    |-  ( ph  ->  Fun  `' ( R ⊔d  S )
 )
 
2.6.36.6  Countable sets
 
Theorem0ct 7084 The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
 |- 
 E. f  f : om -onto-> ( (/) 1o )
 
Theoremctmlemr 7085* Lemma for ctm 7086. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.)
 |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> A  ->  E. f  f : om -onto-> ( A 1o ) ) )
 
Theoremctm 7086* Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
 |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. f  f : om -onto-> A ) )
 
Theoremctssdclemn0 7087* Lemma for ctssdc 7090. The  -.  (/)  e.  S case. (Contributed by Jim Kingdon, 16-Aug-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ph  ->  -.  (/)  e.  S )   =>    |-  ( ph  ->  E. g  g : om -onto-> ( A 1o ) )
 
Theoremctssdccl 7088* A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7090 but expressed in terms of classes rather than  E.. (Contributed by Jim Kingdon, 30-Oct-2023.)
 |-  ( ph  ->  F : om -onto-> ( A 1o )
 )   &    |-  S  =  { x  e.  om  |  ( F `
  x )  e.  (inl " A ) }   &    |-  G  =  ( `'inl  o.  F )   =>    |-  ( ph  ->  ( S  C_  om  /\  G : S -onto-> A  /\  A. n  e.  om DECID  n  e.  S ) )
 
Theoremctssdclemr 7089* Lemma for ctssdc 7090. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
 |-  ( E. f  f : om -onto-> ( A 1o )  ->  E. s
 ( s  C_  om  /\  E. f  f : s
 -onto-> A  /\  A. n  e.  om DECID  n  e.  s ) )
 
Theoremctssdc 7090* A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7126. (Contributed by Jim Kingdon, 15-Aug-2023.)
 |-  ( E. s ( s  C_  om  /\  E. f  f : s -onto-> A 
 /\  A. n  e.  om DECID  n  e.  s )  <->  E. f  f : om -onto-> ( A 1o )
 )
 
Theoremenumctlemm 7091* Lemma for enumct 7092. The case where  N is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
 |-  ( ph  ->  F : N -onto-> A )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  (/)  e.  N )   &    |-  G  =  ( k  e.  om  |->  if ( k  e.  N ,  ( F `
  k ) ,  ( F `  (/) ) ) )   =>    |-  ( ph  ->  G : om -onto-> A )
 
Theoremenumct 7092* A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as  E. n  e. 
om E. f f : n -onto-> A per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as  E. g g : om -onto-> ( A 1o ) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
 |-  ( E. n  e. 
 om  E. f  f : n -onto-> A  ->  E. g  g : om -onto-> ( A 1o ) )
 
Theoremfinct 7093* A finite set is countable. (Contributed by Jim Kingdon, 17-Mar-2023.)
 |-  ( A  e.  Fin  ->  E. g  g : om -onto-> ( A 1o )
 )
 
Theoremomct 7094  om is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |- 
 E. f  f : om -onto-> ( om 1o )
 
Theoremctfoex 7095* A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
 |-  ( E. f  f : om -onto-> ( A 1o )  ->  A  e.  _V )
 
2.6.37  The one-point compactification of the natural numbers

This section introduces the one-point compactification of the set of natural numbers, introduced by Escardo as the set of nonincreasing sequences on  om with values in  2o. The topological results justifying its name will be proved later.

 
Syntaxxnninf 7096 Set of nonincreasing sequences in 
2o  ^m  om.
 class
 
Definitiondf-nninf 7097* Define the set of nonincreasing sequences in  2o 
^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9199 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6409) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
 |-  =  { f  e.  ( 2o  ^m  om )  | 
 A. i  e.  om  ( f `  suc  i )  C_  ( f `
  i ) }
 
Theoremnninfex 7098 is a set. (Contributed by Jim Kingdon, 10-Aug-2022.)
 |-  e.  _V
 
Theoremnninff 7099 An element of ℕ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
 |-  ( A  e.  ->  A : om --> 2o )
 
Theoreminfnninf 7100 The point at infinity in ℕ is the constant sequence equal to  1o. Note that with our encoding of functions, that constant function can also be expressed as  ( om  X.  { 1o } ), as fconstmpt 4658 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
 |-  ( i  e.  om  |->  1o )  e.
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >