HomeHome Intuitionistic Logic Explorer
Theorem List (p. 71 of 122)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7001-7100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddcomnqg 7001 Addition of positive fractions is commutative. (Contributed by Jim Kingdon, 15-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  +Q  B )  =  ( B  +Q  A ) )
 
Theoremaddassnqg 7002 Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( ( A  +Q  B )  +Q  C )  =  ( A  +Q  ( B  +Q  C ) ) )
 
Theoremmulcomnqg 7003 Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  .Q  B )  =  ( B  .Q  A ) )
 
Theoremmulassnqg 7004 Multiplication of positive fractions is associative. (Contributed by Jim Kingdon, 17-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( ( A  .Q  B )  .Q  C )  =  ( A  .Q  ( B  .Q  C ) ) )
 
Theoremmulcanenq 7005 Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  -> 
 <. ( A  .N  B ) ,  ( A  .N  C ) >.  ~Q  <. B ,  C >. )
 
Theoremmulcanenqec 7006 Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 17-Sep-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  [ <. ( A  .N  B ) ,  ( A  .N  C ) >. ] 
 ~Q  =  [ <. B ,  C >. ]  ~Q  )
 
Theoremdistrnqg 7007 Multiplication of positive fractions is distributive. (Contributed by Jim Kingdon, 17-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  ( B  +Q  C ) )  =  ( ( A  .Q  B )  +Q  ( A  .Q  C ) ) )
 
Theorem1qec 7008 The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.)
 |-  ( A  e.  N.  ->  1Q  =  [ <. A ,  A >. ]  ~Q  )
 
Theoremmulidnq 7009 Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.)
 |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
 
Theoremrecexnq 7010* Existence of positive fraction reciprocal. (Contributed by Jim Kingdon, 20-Sep-2019.)
 |-  ( A  e.  Q.  ->  E. y ( y  e.  Q.  /\  ( A  .Q  y )  =  1Q ) )
 
Theoremrecmulnqg 7011 Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <->  ( A  .Q  B )  =  1Q ) )
 
Theoremrecclnq 7012 Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
 |-  ( A  e.  Q.  ->  ( *Q `  A )  e.  Q. )
 
Theoremrecidnq 7013 A positive fraction times its reciprocal is 1. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
 |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  A ) )  =  1Q )
 
Theoremrecrecnq 7014 Reciprocal of reciprocal of positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 29-Apr-2013.)
 |-  ( A  e.  Q.  ->  ( *Q `  ( *Q `  A ) )  =  A )
 
Theoremrec1nq 7015 Reciprocal of positive fraction one. (Contributed by Jim Kingdon, 29-Dec-2019.)
 |-  ( *Q `  1Q )  =  1Q
 
Theoremnqtri3or 7016 Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A )
 )
 
Theoremltdcnq 7017 Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  -> DECID  A  <Q  B )
 
Theoremltsonq 7018 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.)
 |- 
 <Q  Or  Q.
 
Theoremnqtric 7019 Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  <->  -.  ( A  =  B  \/  B  <Q  A )
 ) )
 
Theoremltanqg 7020 Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
 
Theoremltmnqg 7021 Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
 
Theoremltanqi 7022 Ordering property of addition for positive fractions. One direction of ltanqg 7020. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ( A  <Q  B 
 /\  C  e.  Q. )  ->  ( C  +Q  A )  <Q  ( C  +Q  B ) )
 
Theoremltmnqi 7023 Ordering property of multiplication for positive fractions. One direction of ltmnqg 7021. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ( A  <Q  B 
 /\  C  e.  Q. )  ->  ( C  .Q  A )  <Q  ( C  .Q  B ) )
 
Theoremlt2addnq 7024 Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.)
 |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. ) )  ->  ( ( A  <Q  B 
 /\  C  <Q  D ) 
 ->  ( A  +Q  C )  <Q  ( B  +Q  D ) ) )
 
Theoremlt2mulnq 7025 Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. ) )  ->  ( ( A  <Q  B 
 /\  C  <Q  D ) 
 ->  ( A  .Q  C )  <Q  ( B  .Q  D ) ) )
 
Theorem1lt2nq 7026 One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |- 
 1Q  <Q  ( 1Q  +Q  1Q )
 
Theoremltaddnq 7027 The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  A  <Q  ( A  +Q  B ) )
 
Theoremltexnqq 7028* Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  <->  E. x  e.  Q.  ( A  +Q  x )  =  B )
 )
 
Theoremltexnqi 7029* Ordering on positive fractions in terms of existence of sum. (Contributed by Jim Kingdon, 30-Apr-2020.)
 |-  ( A  <Q  B  ->  E. x  e.  Q.  ( A  +Q  x )  =  B )
 
Theoremhalfnqq 7030* One-half of any positive fraction is a fraction. (Contributed by Jim Kingdon, 23-Sep-2019.)
 |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  A )
 
Theoremhalfnq 7031* One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  ( A  e.  Q.  ->  E. x ( x  +Q  x )  =  A )
 
Theoremnsmallnqq 7032* There is no smallest positive fraction. (Contributed by Jim Kingdon, 24-Sep-2019.)
 |-  ( A  e.  Q.  ->  E. x  e.  Q.  x  <Q  A )
 
Theoremnsmallnq 7033* There is no smallest positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  ( A  e.  Q.  ->  E. x  x  <Q  A )
 
Theoremsubhalfnqq 7034* There is a number which is less than half of any positive fraction. The case where  A is one is Lemma 11.4 of [BauerTaylor], p. 50, and they use the word "approximate half" for such a number (since there may be constructions, for some structures other than the rationals themselves, which rely on such an approximate half but do not require division by two as seen at halfnqq 7030). (Contributed by Jim Kingdon, 25-Nov-2019.)
 |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  A )
 
Theoremltbtwnnqq 7035* There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
 |-  ( A  <Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
 
Theoremltbtwnnq 7036* There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  ( A  <Q  B  <->  E. x ( A 
 <Q  x  /\  x  <Q  B ) )
 
Theoremarchnqq 7037* For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.)
 |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
 
Theoremprarloclemarch 7038* A version of the Archimedean property. This variation is "stronger" than archnqq 7037 in the sense that we provide an integer which is larger than a given rational  A even after being multiplied by a second rational  B. (Contributed by Jim Kingdon, 30-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
 
Theoremprarloclemarch2 7039* Like prarloclemarch 7038 but the integer must be at least two, and there is also  B added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7123. (Contributed by Jim Kingdon, 25-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
 
Theoremltrnqg 7040 Ordering property of reciprocal for positive fractions. For a simplified version of the forward implication, see ltrnqi 7041. (Contributed by Jim Kingdon, 29-Dec-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  <-> 
 ( *Q `  B )  <Q  ( *Q `  A ) ) )
 
Theoremltrnqi 7041 Ordering property of reciprocal for positive fractions. For the converse, see ltrnqg 7040. (Contributed by Jim Kingdon, 24-Sep-2019.)
 |-  ( A  <Q  B  ->  ( *Q `  B ) 
 <Q  ( *Q `  A ) )
 
Theoremnnnq 7042 The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  N.  ->  [ <. A ,  1o >. ]  ~Q  e.  Q. )
 
Theoremltnnnq 7043 Ordering of positive integers via 
<N or  <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  <->  [ <. A ,  1o >. ]  ~Q  <Q  [ <. B ,  1o >. ]  ~Q  )
 )
 
Definitiondf-enq0 7044* Define equivalence relation for nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
 |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v ) ) ) }
 
Definitiondf-nq0 7045 Define class of nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
 |- Q0  =  ( ( om  X.  N. ) /. ~Q0  )
 
Definitiondf-0nq0 7046 Define nonnegative fraction constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 5-Nov-2019.)
 |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
 
Definitiondf-plq0 7047* Define addition on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
 |- +Q0  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
 v  .o  u )
 ) ,  ( v  .o  f ) >. ] ~Q0  )
 ) }
 
Definitiondf-mq0 7048* Define multiplication on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
 |- ·Q0  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
 
Theoremdfmq0qs 7049* Multiplication on nonnegative fractions. This definition is similar to df-mq0 7048 but expands Q0 (Contributed by Jim Kingdon, 22-Nov-2019.)
 |- ·Q0  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  (
 ( om  X.  N. ) /. ~Q0  ) 
 /\  y  e.  (
 ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
 
Theoremdfplq0qs 7050* Addition on nonnegative fractions. This definition is similar to df-plq0 7047 but expands Q0 (Contributed by Jim Kingdon, 24-Nov-2019.)
 |- +Q0  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  (
 ( om  X.  N. ) /. ~Q0  ) 
 /\  y  e.  (
 ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
 v  .o  u )
 ) ,  ( v  .o  f ) >. ] ~Q0  )
 ) }
 
Theoremenq0enq 7051 Equivalence on positive fractions in terms of equivalence on nonnegative fractions. (Contributed by Jim Kingdon, 12-Nov-2019.)
 |- 
 ~Q  =  ( ~Q0  i^i  ( ( N. 
 X.  N. )  X.  ( N.  X.  N. ) ) )
 
Theoremenq0sym 7052 The equivalence relation for nonnegative fractions is symmetric. Lemma for enq0er 7055. (Contributed by Jim Kingdon, 14-Nov-2019.)
 |-  ( f ~Q0  g  ->  g ~Q0  f )
 
Theoremenq0ref 7053 The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7055. (Contributed by Jim Kingdon, 14-Nov-2019.)
 |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )
 
Theoremenq0tr 7054 The equivalence relation for nonnegative fractions is transitive. Lemma for enq0er 7055. (Contributed by Jim Kingdon, 14-Nov-2019.)
 |-  ( ( f ~Q0  g  /\  g ~Q0  h )  ->  f ~Q0  h )
 
Theoremenq0er 7055 The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
 |- ~Q0  Er  ( om  X.  N. )
 
Theoremenq0breq 7056 Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  ->  ( <. A ,  B >. ~Q0  <. C ,  D >.  <->  ( A  .o  D )  =  ( B  .o  C ) ) )
 
Theoremenq0eceq 7057 Equivalence class equality of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 24-Nov-2019.)
 |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  <->  ( A  .o  D )  =  ( B  .o  C ) ) )
 
Theoremnqnq0pi 7058 A nonnegative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ]  ~Q  )
 
Theoremenq0ex 7059 The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
 |- ~Q0  e.  _V
 
Theoremnq0ex 7060 The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
 |- Q0  e.  _V
 
Theoremnqnq0 7061 A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.)
 |- 
 Q.  C_ Q0
 
Theoremnq0nn 7062* Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
 |-  ( A  e. Q0  ->  E. w E. v
 ( ( w  e. 
 om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  ) )
 
Theoremaddcmpblnq0 7063 Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
 |-  ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
 )  /\  ( ( F  e.  om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) ) 
 ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R ) ) 
 ->  <. ( ( A  .o  G )  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0  <. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. ) )
 
Theoremmulcmpblnq0 7064 Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
 |-  ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
 )  /\  ( ( F  e.  om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) ) 
 ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R ) ) 
 ->  <. ( A  .o  F ) ,  ( B  .o  G ) >. ~Q0  <. ( C  .o  R ) ,  ( D  .o  S ) >. ) )
 
Theoremmulcanenq0ec 7065 Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )
 
Theoremnnnq0lem1 7066* Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7069 and mulnnnq0 7070. (Contributed by Jim Kingdon, 23-Nov-2019.)
 |-  ( ( ( A  e.  ( ( om  X. 
 N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
 ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  ( ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
 )  /\  ( ( u  e.  om  /\  t  e.  N. )  /\  (
 g  e.  om  /\  h  e.  N. )
 ) )  /\  (
 ( w  .o  f
 )  =  ( v  .o  s )  /\  ( u  .o  h )  =  ( t  .o  g ) ) ) )
 
Theoremaddnq0mo 7067* There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
 |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
 v  .o  u )
 ) ,  ( v  .o  t ) >. ] ~Q0  )
 )
 
Theoremmulnq0mo 7068* There is at most one result from multiplying nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
 |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) )
 
Theoremaddnnnq0 7069 Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
 |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. ( ( A  .o  D )  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )
 
Theoremmulnnnq0 7070 Multiplication of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.)
 |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ] ~Q0 ·Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  )
 
Theoremaddclnq0 7071 Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.)
 |-  ( ( A  e. Q0  /\  B  e. Q0 ) 
 ->  ( A +Q0  B )  e. Q0 )
 
Theoremmulclnq0 7072 Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.)
 |-  ( ( A  e. Q0  /\  B  e. Q0 ) 
 ->  ( A ·Q0  B )  e. Q0 )
 
Theoremnqpnq0nq 7073 A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e. Q0 )  ->  ( A +Q0  B )  e.  Q. )
 
Theoremnqnq0a 7074 Addition of positive fractions is equal with  +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
 
Theoremnqnq0m 7075 Multiplication of positive fractions is equal with  .Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  .Q  B )  =  ( A ·Q0  B ) )
 
Theoremnq0m0r 7076 Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
 |-  ( A  e. Q0  ->  (0Q0 ·Q0  A )  = 0Q0 )
 
Theoremnq0a0 7077 Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
 |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
 
Theoremnnanq0 7078 Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
 |-  ( ( N  e.  om 
 /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  ) )
 
Theoremdistrnq0 7079 Multiplication of nonnegative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.)
 |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( A ·Q0  ( B +Q0  C ) )  =  ( ( A ·Q0  B ) +Q0  ( A ·Q0  C ) ) )
 
Theoremmulcomnq0 7080 Multiplication of nonnegative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.)
 |-  ( ( A  e. Q0  /\  B  e. Q0 ) 
 ->  ( A ·Q0  B )  =  ( B ·Q0  A ) )
 
Theoremaddassnq0lemcl 7081 A natural number closure law. Lemma for addassnq0 7082. (Contributed by Jim Kingdon, 3-Dec-2019.)
 |-  ( ( ( I  e.  om  /\  J  e.  N. )  /\  ( K  e.  om  /\  L  e.  N. ) )  ->  ( ( ( I  .o  L )  +o  ( J  .o  K ) )  e.  om  /\  ( J  .o  L )  e.  N. ) )
 
Theoremaddassnq0 7082 Addition of non-negaative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.)
 |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( ( A +Q0  B ) +Q0  C )  =  ( A +Q0  ( B +Q0  C ) ) )
 
Theoremdistnq0r 7083 Multiplication of nonnegative fractions is distributive. Version of distrnq0 7079 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.)
 |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( ( B +Q0  C ) ·Q0  A )  =  ( ( B ·Q0  A ) +Q0  ( C ·Q0  A ) ) )
 
Theoremaddpinq1 7084 Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  N.  ->  [ <. ( A  +N  1o ) ,  1o >. ] 
 ~Q  =  ( [ <. A ,  1o >. ] 
 ~Q  +Q  1Q )
 )
 
Theoremnq02m 7085 Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.)
 |-  ( A  e. Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A ) )
 
Definitiondf-inp 7086* Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other.

Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers.

A Dedekind cut is an ordered pair of a lower set  l and an upper set  u which is inhabited ( E. q  e. 
Q. q  e.  l  /\  E. r  e. 
Q. r  e.  u), rounded ( A. q  e.  Q. ( q  e.  l  <->  E. r  e.  Q. ( q  <Q  r  /\  r  e.  l
) ) and likewise for  u), disjoint ( A. q  e. 
Q. -.  ( q  e.  l  /\  q  e.  u )) and located ( A. q  e. 
Q. A. r  e.  Q. ( q  <Q  r  ->  ( q  e.  l  \/  r  e.  u
) )). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts.

(Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.)

 |- 
 P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q. 
 /\  u  C_  Q. )  /\  ( E. q  e. 
 Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u )
 )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  (
 q  <Q  r  /\  r  e.  l ) )  /\  A. r  e.  Q.  (
 r  e.  u  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  u )
 ) )  /\  A. q  e.  Q.  -.  (
 q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  l  \/  r  e.  u ) ) ) ) }
 
Definitiondf-i1p 7087* Define the positive real constant 1. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by Jim Kingdon, 25-Sep-2019.)
 |- 
 1P  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
 
Definitiondf-iplp 7088* Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example,  r  e.  ( 1st `  x ) implies 
r  e.  Q.) and can be simplified as shown at genpdf 7128.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

 |- 
 +P.  =  ( x  e.  P. ,  y  e. 
 P.  |->  <. { q  e. 
 Q.  |  E. r  e.  Q.  E. s  e. 
 Q.  ( r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
 r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
 )  /\  q  =  ( r  +Q  s
 ) ) } >. )
 
Definitiondf-imp 7089* Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7088 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

 |- 
 .P.  =  ( x  e.  P. ,  y  e. 
 P.  |->  <. { q  e. 
 Q.  |  E. r  e.  Q.  E. s  e. 
 Q.  ( r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
 r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
 )  /\  q  =  ( r  .Q  s
 ) ) } >. )
 
Definitiondf-iltp 7090* Define ordering on positive reals. We define  x 
<P  y if there is a positive fraction  q which is an element of the upper cut of  x and the lower cut of  y. From the definition of < in Section 11.2.1 of [HoTT], p. (varies).

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

 |- 
 <P  =  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }
 
Theoremnpsspw 7091 Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
 |- 
 P.  C_  ( ~P Q.  X. 
 ~P Q. )
 
Theorempreqlu 7092 Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  =  B 
 <->  ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B ) ) ) )
 
Theoremnpex 7093 The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.)
 |- 
 P.  e.  _V
 
Theoremelinp 7094* Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
 |-  ( <. L ,  U >.  e.  P.  <->  ( ( ( L  C_  Q.  /\  U  C_ 
 Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L )
 )  /\  A. r  e. 
 Q.  ( r  e.  U  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U )
 ) )  /\  A. q  e.  Q.  -.  (
 q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  L  \/  r  e.  U )
 ) ) ) )
 
Theoremprop 7095 A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
 |-  ( A  e.  P.  -> 
 <. ( 1st `  A ) ,  ( 2nd `  A ) >.  e.  P. )
 
Theoremelnp1st2nd 7096* Membership in positive reals, using  1st and  2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
 |-  ( A  e.  P.  <->  (
 ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A ) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A ) ) 
 /\  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  A )  \/  r  e.  ( 2nd `  A ) ) ) ) ) )
 
Theoremprml 7097* A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
 |-  ( <. L ,  U >.  e.  P.  ->  E. x  e.  Q.  x  e.  L )
 
Theoremprmu 7098* A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
 |-  ( <. L ,  U >.  e.  P.  ->  E. x  e.  Q.  x  e.  U )
 
Theoremprssnql 7099 The lower cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
 |-  ( <. L ,  U >.  e.  P.  ->  L  C_ 
 Q. )
 
Theoremprssnqu 7100 The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
 |-  ( <. L ,  U >.  e.  P.  ->  U  C_ 
 Q. )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12199
  Copyright terms: Public domain < Previous  Next >