ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infisoti Unicode version

Theorem infisoti 6807
Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infisoti.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
infisoti.2  |-  ( ph  ->  C  C_  A )
infisoti.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
infisoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
infisoti  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Distinct variable groups:    u, A, v, x, y, z    u, B, v, x, y, z   
u, C, v, x, y, z    u, F, v, x, y, z   
u, R, v, x, y, z    u, S, v, x, y, z    ph, u, v, x, y, z

Proof of Theorem infisoti
StepHypRef Expression
1 infisoti.1 . . . 4  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
2 isocnv2 5629 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  <-> 
F  Isom  `' R ,  `' S ( A ,  B ) )
31, 2sylib 121 . . 3  |-  ( ph  ->  F  Isom  `' R ,  `' S ( A ,  B ) )
4 infisoti.2 . . 3  |-  ( ph  ->  C  C_  A )
5 infisoti.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
65cnvinfex 6793 . . 3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  C  y `' R z ) ) )
7 infisoti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
87cnvti 6794 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
93, 4, 6, 8supisoti 6785 . 2  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  `' S
)  =  ( F `
 sup ( C ,  A ,  `' R ) ) )
10 df-inf 6760 . 2  |- inf ( ( F " C ) ,  B ,  S
)  =  sup (
( F " C
) ,  B ,  `' S )
11 df-inf 6760 . . 3  |- inf ( C ,  A ,  R
)  =  sup ( C ,  A ,  `' R )
1211fveq2i 5343 . 2  |-  ( F `
inf ( C ,  A ,  R )
)  =  ( F `
 sup ( C ,  A ,  `' R ) )
139, 10, 123eqtr4g 2152 1  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445   A.wral 2370   E.wrex 2371    C_ wss 3013   class class class wbr 3867   `'ccnv 4466   "cima 4470   ` cfv 5049    Isom wiso 5050   supcsup 6757  infcinf 6758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-isom 5058  df-riota 5646  df-sup 6759  df-inf 6760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator