Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infisoti | Unicode version |
Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.) |
Ref | Expression |
---|---|
infisoti.1 | |
infisoti.2 | |
infisoti.3 | |
infisoti.ti |
Ref | Expression |
---|---|
infisoti | inf inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infisoti.1 | . . . 4 | |
2 | isocnv2 5779 | . . . 4 | |
3 | 1, 2 | sylib 121 | . . 3 |
4 | infisoti.2 | . . 3 | |
5 | infisoti.3 | . . . 4 | |
6 | 5 | cnvinfex 6979 | . . 3 |
7 | infisoti.ti | . . . 4 | |
8 | 7 | cnvti 6980 | . . 3 |
9 | 3, 4, 6, 8 | supisoti 6971 | . 2 |
10 | df-inf 6946 | . 2 inf | |
11 | df-inf 6946 | . . 3 inf | |
12 | 11 | fveq2i 5488 | . 2 inf |
13 | 9, 10, 12 | 3eqtr4g 2223 | 1 inf inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2443 wrex 2444 wss 3115 class class class wbr 3981 ccnv 4602 cima 4606 cfv 5187 wiso 5188 csup 6943 infcinf 6944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-sup 6945 df-inf 6946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |