ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infisoti Unicode version

Theorem infisoti 7134
Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infisoti.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
infisoti.2  |-  ( ph  ->  C  C_  A )
infisoti.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
infisoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
infisoti  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Distinct variable groups:    u, A, v, x, y, z    u, B, v, x, y, z   
u, C, v, x, y, z    u, F, v, x, y, z   
u, R, v, x, y, z    u, S, v, x, y, z    ph, u, v, x, y, z

Proof of Theorem infisoti
StepHypRef Expression
1 infisoti.1 . . . 4  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
2 isocnv2 5881 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  <-> 
F  Isom  `' R ,  `' S ( A ,  B ) )
31, 2sylib 122 . . 3  |-  ( ph  ->  F  Isom  `' R ,  `' S ( A ,  B ) )
4 infisoti.2 . . 3  |-  ( ph  ->  C  C_  A )
5 infisoti.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
65cnvinfex 7120 . . 3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  C  y `' R z ) ) )
7 infisoti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
87cnvti 7121 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
93, 4, 6, 8supisoti 7112 . 2  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  `' S
)  =  ( F `
 sup ( C ,  A ,  `' R ) ) )
10 df-inf 7087 . 2  |- inf ( ( F " C ) ,  B ,  S
)  =  sup (
( F " C
) ,  B ,  `' S )
11 df-inf 7087 . . 3  |- inf ( C ,  A ,  R
)  =  sup ( C ,  A ,  `' R )
1211fveq2i 5579 . 2  |-  ( F `
inf ( C ,  A ,  R )
)  =  ( F `
 sup ( C ,  A ,  `' R ) )
139, 10, 123eqtr4g 2263 1  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   class class class wbr 4044   `'ccnv 4674   "cima 4678   ` cfv 5271    Isom wiso 5272   supcsup 7084  infcinf 7085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-sup 7086  df-inf 7087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator