ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infisoti Unicode version

Theorem infisoti 7009
Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infisoti.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
infisoti.2  |-  ( ph  ->  C  C_  A )
infisoti.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
infisoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
infisoti  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Distinct variable groups:    u, A, v, x, y, z    u, B, v, x, y, z   
u, C, v, x, y, z    u, F, v, x, y, z   
u, R, v, x, y, z    u, S, v, x, y, z    ph, u, v, x, y, z

Proof of Theorem infisoti
StepHypRef Expression
1 infisoti.1 . . . 4  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
2 isocnv2 5791 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  <-> 
F  Isom  `' R ,  `' S ( A ,  B ) )
31, 2sylib 121 . . 3  |-  ( ph  ->  F  Isom  `' R ,  `' S ( A ,  B ) )
4 infisoti.2 . . 3  |-  ( ph  ->  C  C_  A )
5 infisoti.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
65cnvinfex 6995 . . 3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  C  y `' R z ) ) )
7 infisoti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
87cnvti 6996 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
93, 4, 6, 8supisoti 6987 . 2  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  `' S
)  =  ( F `
 sup ( C ,  A ,  `' R ) ) )
10 df-inf 6962 . 2  |- inf ( ( F " C ) ,  B ,  S
)  =  sup (
( F " C
) ,  B ,  `' S )
11 df-inf 6962 . . 3  |- inf ( C ,  A ,  R
)  =  sup ( C ,  A ,  `' R )
1211fveq2i 5499 . 2  |-  ( F `
inf ( C ,  A ,  R )
)  =  ( F `
 sup ( C ,  A ,  `' R ) )
139, 10, 123eqtr4g 2228 1  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   class class class wbr 3989   `'ccnv 4610   "cima 4614   ` cfv 5198    Isom wiso 5199   supcsup 6959  infcinf 6960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-sup 6961  df-inf 6962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator