ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infisoti Unicode version

Theorem infisoti 6993
Description: Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
Hypotheses
Ref Expression
infisoti.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
infisoti.2  |-  ( ph  ->  C  C_  A )
infisoti.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
infisoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
infisoti  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Distinct variable groups:    u, A, v, x, y, z    u, B, v, x, y, z   
u, C, v, x, y, z    u, F, v, x, y, z   
u, R, v, x, y, z    u, S, v, x, y, z    ph, u, v, x, y, z

Proof of Theorem infisoti
StepHypRef Expression
1 infisoti.1 . . . 4  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
2 isocnv2 5779 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  <-> 
F  Isom  `' R ,  `' S ( A ,  B ) )
31, 2sylib 121 . . 3  |-  ( ph  ->  F  Isom  `' R ,  `' S ( A ,  B ) )
4 infisoti.2 . . 3  |-  ( ph  ->  C  C_  A )
5 infisoti.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
65cnvinfex 6979 . . 3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  C  y `' R z ) ) )
7 infisoti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
87cnvti 6980 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
93, 4, 6, 8supisoti 6971 . 2  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  `' S
)  =  ( F `
 sup ( C ,  A ,  `' R ) ) )
10 df-inf 6946 . 2  |- inf ( ( F " C ) ,  B ,  S
)  =  sup (
( F " C
) ,  B ,  `' S )
11 df-inf 6946 . . 3  |- inf ( C ,  A ,  R
)  =  sup ( C ,  A ,  `' R )
1211fveq2i 5488 . 2  |-  ( F `
inf ( C ,  A ,  R )
)  =  ( F `
 sup ( C ,  A ,  `' R ) )
139, 10, 123eqtr4g 2223 1  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2443   E.wrex 2444    C_ wss 3115   class class class wbr 3981   `'ccnv 4602   "cima 4606   ` cfv 5187    Isom wiso 5188   supcsup 6943  infcinf 6944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-sup 6945  df-inf 6946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator