ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inf00 GIF version

Theorem inf00 7097
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
inf00 inf(𝐵, ∅, 𝑅) = ∅

Proof of Theorem inf00
StepHypRef Expression
1 df-inf 7051 . 2 inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, 𝑅)
2 sup00 7069 . 2 sup(𝐵, ∅, 𝑅) = ∅
31, 2eqtri 2217 1 inf(𝐵, ∅, 𝑅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  c0 3450  ccnv 4662  supcsup 7048  infcinf 7049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-uni 3840  df-sup 7050  df-inf 7051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator