| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inf00 | GIF version | ||
| Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| inf00 | ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7069 | . 2 ⊢ inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, ◡𝑅) | |
| 2 | sup00 7087 | . 2 ⊢ sup(𝐵, ∅, ◡𝑅) = ∅ | |
| 3 | 1, 2 | eqtri 2225 | 1 ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∅c0 3459 ◡ccnv 4672 supcsup 7066 infcinf 7067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-uni 3850 df-sup 7068 df-inf 7069 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |