ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inf00 GIF version

Theorem inf00 7154
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
inf00 inf(𝐵, ∅, 𝑅) = ∅

Proof of Theorem inf00
StepHypRef Expression
1 df-inf 7108 . 2 inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, 𝑅)
2 sup00 7126 . 2 sup(𝐵, ∅, 𝑅) = ∅
31, 2eqtri 2227 1 inf(𝐵, ∅, 𝑅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  c0 3464  ccnv 4687  supcsup 7105  infcinf 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-sn 3644  df-uni 3860  df-sup 7107  df-inf 7108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator