![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inindi | GIF version |
Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
inindi | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 3251 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
2 | 1 | ineq1i 3239 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
3 | in4 3258 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | |
4 | 2, 3 | eqtr3i 2137 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1314 ∩ cin 3036 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-in 3043 |
This theorem is referenced by: resindi 4792 offres 5987 |
Copyright terms: Public domain | W3C validator |