ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inidm Unicode version

Theorem inidm 3368
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
inidm  |-  ( A  i^i  A )  =  A

Proof of Theorem inidm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 anidm 396 . 2  |-  ( ( x  e.  A  /\  x  e.  A )  <->  x  e.  A )
21ineqri 3352 1  |-  ( A  i^i  A )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164    i^i cin 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159
This theorem is referenced by:  inindi  3376  inindir  3377  uneqin  3410  ssdifeq0  3529  intsng  3904  xpindi  4797  xpindir  4798  resindm  4984  ofres  6145  offval2  6146  ofrfval2  6147  suppssof1  6148  ofco  6149  offveqb  6150  ofc1g  6151  ofc2g  6152  caofref  6154  caofrss  6157  caoftrn  6158  undifdc  6980  ofnegsub  8981  ressbasid  12688  strressid  12689  ressinbasd  12692  grpressid  13133  gsumfzmptfidmadd  13409  lcomf  13823  crng2idl  14027  psrbaglesuppg  14158  psraddcl  14164  baspartn  14218  epttop  14258  dvaddxxbr  14850  dvmulxxbr  14851  dvaddxx  14852  dvmulxx  14853  dviaddf  14854  dvimulf  14855  plyaddlem1  14893  plyaddlem  14895
  Copyright terms: Public domain W3C validator