| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inidm | Unicode version | ||
| Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| inidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 396 |
. 2
| |
| 2 | 1 | ineqri 3366 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: inindi 3390 inindir 3391 uneqin 3424 ssdifeq0 3543 intsng 3919 xpindi 4814 xpindir 4815 resindm 5002 ofres 6175 offval2 6176 ofrfval2 6177 suppssof1 6178 ofco 6179 offveqb 6180 ofc1g 6182 ofc2g 6183 caofref 6185 caofrss 6192 caoftrn 6193 undifdc 7023 ofnegsub 9037 ressbasid 12935 strressid 12936 ressinbasd 12939 grpressid 13426 gsumfzmptfidmadd 13708 lcomf 14122 crng2idl 14326 psrbaglesuppg 14467 psraddcl 14475 mplsubgfilemcl 14494 baspartn 14555 epttop 14595 dvaddxxbr 15206 dvmulxxbr 15207 dvaddxx 15208 dvmulxx 15209 dviaddf 15210 dvimulf 15211 plyaddlem1 15252 plyaddlem 15254 |
| Copyright terms: Public domain | W3C validator |