| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inidm | Unicode version | ||
| Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| inidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 396 |
. 2
| |
| 2 | 1 | ineqri 3374 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: inindi 3398 inindir 3399 uneqin 3432 ssdifeq0 3551 intsng 3933 xpindi 4831 xpindir 4832 resindm 5020 ofres 6196 offval2 6197 ofrfval2 6198 suppssof1 6199 ofco 6200 offveqb 6201 ofc1g 6203 ofc2g 6204 caofref 6206 caofrss 6213 caoftrn 6214 undifdc 7047 ofnegsub 9070 ressbasid 13017 strressid 13018 ressinbasd 13021 grpressid 13508 gsumfzmptfidmadd 13790 lcomf 14204 crng2idl 14408 psrbaglesuppg 14549 psraddcl 14557 mplsubgfilemcl 14576 baspartn 14637 epttop 14677 dvaddxxbr 15288 dvmulxxbr 15289 dvaddxx 15290 dvmulxx 15291 dviaddf 15292 dvimulf 15293 plyaddlem1 15334 plyaddlem 15336 |
| Copyright terms: Public domain | W3C validator |