![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inidm | Unicode version |
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inidm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 396 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ineqri 3352 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 |
This theorem is referenced by: inindi 3376 inindir 3377 uneqin 3410 ssdifeq0 3529 intsng 3904 xpindi 4797 xpindir 4798 resindm 4984 ofres 6145 offval2 6146 ofrfval2 6147 suppssof1 6148 ofco 6149 offveqb 6150 ofc1g 6151 ofc2g 6152 caofref 6154 caofrss 6157 caoftrn 6158 undifdc 6980 ofnegsub 8981 ressbasid 12688 strressid 12689 ressinbasd 12692 grpressid 13133 gsumfzmptfidmadd 13409 lcomf 13823 crng2idl 14027 psrbaglesuppg 14158 psraddcl 14164 baspartn 14218 epttop 14258 dvaddxxbr 14850 dvmulxxbr 14851 dvaddxx 14852 dvmulxx 14853 dviaddf 14854 dvimulf 14855 plyaddlem1 14893 plyaddlem 14895 |
Copyright terms: Public domain | W3C validator |