ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inidm Unicode version

Theorem inidm 3336
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
inidm  |-  ( A  i^i  A )  =  A

Proof of Theorem inidm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 anidm 394 . 2  |-  ( ( x  e.  A  /\  x  e.  A )  <->  x  e.  A )
21ineqri 3320 1  |-  ( A  i^i  A )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141    i^i cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127
This theorem is referenced by:  inindi  3344  inindir  3345  uneqin  3378  ssdifeq0  3497  intsng  3865  xpindi  4746  xpindir  4747  resindm  4933  ofres  6075  offval2  6076  ofrfval2  6077  suppssof1  6078  ofco  6079  offveqb  6080  caofref  6082  caofrss  6085  caoftrn  6086  undifdc  6901  baspartn  12842  epttop  12884  dvaddxxbr  13459  dvmulxxbr  13460  dvaddxx  13461  dvmulxx  13462  dviaddf  13463  dvimulf  13464
  Copyright terms: Public domain W3C validator