![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inidm | Unicode version |
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inidm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 396 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ineqri 3328 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-in 3135 |
This theorem is referenced by: inindi 3352 inindir 3353 uneqin 3386 ssdifeq0 3505 intsng 3878 xpindi 4762 xpindir 4763 resindm 4949 ofres 6096 offval2 6097 ofrfval2 6098 suppssof1 6099 ofco 6100 offveqb 6101 caofref 6103 caofrss 6106 caoftrn 6107 undifdc 6922 strressid 12524 ressinbasd 12527 grpressid 12885 baspartn 13441 epttop 13483 dvaddxxbr 14058 dvmulxxbr 14059 dvaddxx 14060 dvmulxx 14061 dviaddf 14062 dvimulf 14063 |
Copyright terms: Public domain | W3C validator |