Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inidm | Unicode version |
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inidm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 394 | . 2 | |
2 | 1 | ineqri 3300 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 wcel 2128 cin 3101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 |
This theorem is referenced by: inindi 3324 inindir 3325 uneqin 3358 ssdifeq0 3476 intsng 3841 xpindi 4718 xpindir 4719 resindm 4905 ofres 6040 offval2 6041 ofrfval2 6042 suppssof1 6043 ofco 6044 offveqb 6045 caofref 6047 caofrss 6050 caoftrn 6051 undifdc 6861 baspartn 12408 epttop 12450 dvaddxxbr 13025 dvmulxxbr 13026 dvaddxx 13027 dvmulxx 13028 dviaddf 13029 dvimulf 13030 |
Copyright terms: Public domain | W3C validator |