ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindi Unicode version

Theorem resindi 4957
Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindi  |-  ( A  |`  ( B  i^i  C
) )  =  ( ( A  |`  B )  i^i  ( A  |`  C ) )

Proof of Theorem resindi
StepHypRef Expression
1 xpindir 4798 . . . 4  |-  ( ( B  i^i  C )  X.  _V )  =  ( ( B  X.  _V )  i^i  ( C  X.  _V ) )
21ineq2i 3357 . . 3  |-  ( A  i^i  ( ( B  i^i  C )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( C  X.  _V ) ) )
3 inindi 3376 . . 3  |-  ( A  i^i  ( ( B  X.  _V )  i^i  ( C  X.  _V ) ) )  =  ( ( A  i^i  ( B  X.  _V )
)  i^i  ( A  i^i  ( C  X.  _V ) ) )
42, 3eqtri 2214 . 2  |-  ( A  i^i  ( ( B  i^i  C )  X. 
_V ) )  =  ( ( A  i^i  ( B  X.  _V )
)  i^i  ( A  i^i  ( C  X.  _V ) ) )
5 df-res 4671 . 2  |-  ( A  |`  ( B  i^i  C
) )  =  ( A  i^i  ( ( B  i^i  C )  X.  _V ) )
6 df-res 4671 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
7 df-res 4671 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
86, 7ineq12i 3358 . 2  |-  ( ( A  |`  B )  i^i  ( A  |`  C ) )  =  ( ( A  i^i  ( B  X.  _V ) )  i^i  ( A  i^i  ( C  X.  _V )
) )
94, 5, 83eqtr4i 2224 1  |-  ( A  |`  ( B  i^i  C
) )  =  ( ( A  |`  B )  i^i  ( A  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2760    i^i cin 3152    X. cxp 4657    |` cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-rel 4666  df-res 4671
This theorem is referenced by:  resindm  4984
  Copyright terms: Public domain W3C validator