Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resindi | Unicode version |
Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.) |
Ref | Expression |
---|---|
resindi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpindir 4715 | . . . 4 | |
2 | 1 | ineq2i 3301 | . . 3 |
3 | inindi 3320 | . . 3 | |
4 | 2, 3 | eqtri 2175 | . 2 |
5 | df-res 4591 | . 2 | |
6 | df-res 4591 | . . 3 | |
7 | df-res 4591 | . . 3 | |
8 | 6, 7 | ineq12i 3302 | . 2 |
9 | 4, 5, 8 | 3eqtr4i 2185 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1332 cvv 2709 cin 3097 cxp 4577 cres 4581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 df-xp 4585 df-rel 4586 df-res 4591 |
This theorem is referenced by: resindm 4901 |
Copyright terms: Public domain | W3C validator |