ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunid Unicode version

Theorem iunid 3983
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
Assertion
Ref Expression
iunid  |-  U_ x  e.  A  { x }  =  A
Distinct variable group:    x, A

Proof of Theorem iunid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-sn 3639 . . . . 5  |-  { x }  =  { y  |  y  =  x }
2 equcom 1729 . . . . . 6  |-  ( y  =  x  <->  x  =  y )
32abbii 2321 . . . . 5  |-  { y  |  y  =  x }  =  { y  |  x  =  y }
41, 3eqtri 2226 . . . 4  |-  { x }  =  { y  |  x  =  y }
54a1i 9 . . 3  |-  ( x  e.  A  ->  { x }  =  { y  |  x  =  y } )
65iuneq2i 3945 . 2  |-  U_ x  e.  A  { x }  =  U_ x  e.  A  { y  |  x  =  y }
7 iunab 3974 . . 3  |-  U_ x  e.  A  { y  |  x  =  y }  =  { y  |  E. x  e.  A  x  =  y }
8 risset 2534 . . . 4  |-  ( y  e.  A  <->  E. x  e.  A  x  =  y )
98abbii 2321 . . 3  |-  { y  |  y  e.  A }  =  { y  |  E. x  e.  A  x  =  y }
10 abid2 2326 . . 3  |-  { y  |  y  e.  A }  =  A
117, 9, 103eqtr2i 2232 . 2  |-  U_ x  e.  A  { y  |  x  =  y }  =  A
126, 11eqtri 2226 1  |-  U_ x  e.  A  { x }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   {csn 3633   U_ciun 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-sn 3639  df-iun 3929
This theorem is referenced by:  abnexg  4494  iunxpconst  4736  xpexgALT  6220  uniqs  6682
  Copyright terms: Public domain W3C validator