ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunid Unicode version

Theorem iunid 3921
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
Assertion
Ref Expression
iunid  |-  U_ x  e.  A  { x }  =  A
Distinct variable group:    x, A

Proof of Theorem iunid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-sn 3582 . . . . 5  |-  { x }  =  { y  |  y  =  x }
2 equcom 1694 . . . . . 6  |-  ( y  =  x  <->  x  =  y )
32abbii 2282 . . . . 5  |-  { y  |  y  =  x }  =  { y  |  x  =  y }
41, 3eqtri 2186 . . . 4  |-  { x }  =  { y  |  x  =  y }
54a1i 9 . . 3  |-  ( x  e.  A  ->  { x }  =  { y  |  x  =  y } )
65iuneq2i 3884 . 2  |-  U_ x  e.  A  { x }  =  U_ x  e.  A  { y  |  x  =  y }
7 iunab 3912 . . 3  |-  U_ x  e.  A  { y  |  x  =  y }  =  { y  |  E. x  e.  A  x  =  y }
8 risset 2494 . . . 4  |-  ( y  e.  A  <->  E. x  e.  A  x  =  y )
98abbii 2282 . . 3  |-  { y  |  y  e.  A }  =  { y  |  E. x  e.  A  x  =  y }
10 abid2 2287 . . 3  |-  { y  |  y  e.  A }  =  A
117, 9, 103eqtr2i 2192 . 2  |-  U_ x  e.  A  { y  |  x  =  y }  =  A
126, 11eqtri 2186 1  |-  U_ x  e.  A  { x }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   {csn 3576   U_ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582  df-iun 3868
This theorem is referenced by:  abnexg  4424  iunxpconst  4664  xpexgALT  6101  uniqs  6559
  Copyright terms: Public domain W3C validator