ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunid Unicode version

Theorem iunid 4021
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
Assertion
Ref Expression
iunid  |-  U_ x  e.  A  { x }  =  A
Distinct variable group:    x, A

Proof of Theorem iunid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-sn 3672 . . . . 5  |-  { x }  =  { y  |  y  =  x }
2 equcom 1752 . . . . . 6  |-  ( y  =  x  <->  x  =  y )
32abbii 2345 . . . . 5  |-  { y  |  y  =  x }  =  { y  |  x  =  y }
41, 3eqtri 2250 . . . 4  |-  { x }  =  { y  |  x  =  y }
54a1i 9 . . 3  |-  ( x  e.  A  ->  { x }  =  { y  |  x  =  y } )
65iuneq2i 3983 . 2  |-  U_ x  e.  A  { x }  =  U_ x  e.  A  { y  |  x  =  y }
7 iunab 4012 . . 3  |-  U_ x  e.  A  { y  |  x  =  y }  =  { y  |  E. x  e.  A  x  =  y }
8 risset 2558 . . . 4  |-  ( y  e.  A  <->  E. x  e.  A  x  =  y )
98abbii 2345 . . 3  |-  { y  |  y  e.  A }  =  { y  |  E. x  e.  A  x  =  y }
10 abid2 2350 . . 3  |-  { y  |  y  e.  A }  =  A
117, 9, 103eqtr2i 2256 . 2  |-  U_ x  e.  A  { y  |  x  =  y }  =  A
126, 11eqtri 2250 1  |-  U_ x  e.  A  { x }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   {csn 3666   U_ciun 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-sn 3672  df-iun 3967
This theorem is referenced by:  abnexg  4537  iunxpconst  4779  xpexgALT  6278  uniqs  6740
  Copyright terms: Public domain W3C validator