ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpintm Unicode version

Theorem ixpintm 6703
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpintm  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^| B  =  |^|_ y  e.  B  X_ x  e.  A  y )
Distinct variable groups:    x, y, A   
x, B, y    y,
z, B
Allowed substitution hint:    A( z)

Proof of Theorem ixpintm
StepHypRef Expression
1 ixpeq2 6690 . . 3  |-  ( A. x  e.  A  |^| B  =  |^|_ y  e.  B  y  ->  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y )
2 intiin 3927 . . . 4  |-  |^| B  =  |^|_ y  e.  B  y
32a1i 9 . . 3  |-  ( x  e.  A  ->  |^| B  =  |^|_ y  e.  B  y )
41, 3mprg 2527 . 2  |-  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y
5 ixpiinm 6702 . 2  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^|_ y  e.  B  y  =  |^|_ y  e.  B  X_ x  e.  A  y )
64, 5eqtrid 2215 1  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^| B  =  |^|_ y  e.  B  X_ x  e.  A  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   E.wex 1485    e. wcel 2141   |^|cint 3831   |^|_ciin 3874   X_cixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iin 3876  df-br 3990  df-opab 4051  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ixp 6677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator