ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpintm Unicode version

Theorem ixpintm 6587
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpintm  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^| B  =  |^|_ y  e.  B  X_ x  e.  A  y )
Distinct variable groups:    x, y, A   
x, B, y    y,
z, B
Allowed substitution hint:    A( z)

Proof of Theorem ixpintm
StepHypRef Expression
1 ixpeq2 6574 . . 3  |-  ( A. x  e.  A  |^| B  =  |^|_ y  e.  B  y  ->  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y )
2 intiin 3837 . . . 4  |-  |^| B  =  |^|_ y  e.  B  y
32a1i 9 . . 3  |-  ( x  e.  A  ->  |^| B  =  |^|_ y  e.  B  y )
41, 3mprg 2466 . 2  |-  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y
5 ixpiinm 6586 . 2  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^|_ y  e.  B  y  =  |^|_ y  e.  B  X_ x  e.  A  y )
64, 5syl5eq 2162 1  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^| B  =  |^|_ y  e.  B  X_ x  e.  A  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1316   E.wex 1453    e. wcel 1465   |^|cint 3741   |^|_ciin 3784   X_cixp 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iin 3786  df-br 3900  df-opab 3960  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-iota 5058  df-fun 5095  df-fn 5096  df-fv 5101  df-ixp 6561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator