ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniiun Unicode version

Theorem uniiun 3926
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
uniiun  |-  U. A  =  U_ x  e.  A  x
Distinct variable group:    x, A

Proof of Theorem uniiun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfuni2 3798 . 2  |-  U. A  =  { y  |  E. x  e.  A  y  e.  x }
2 df-iun 3875 . 2  |-  U_ x  e.  A  x  =  { y  |  E. x  e.  A  y  e.  x }
31, 2eqtr4i 2194 1  |-  U. A  =  U_ x  e.  A  x
Colors of variables: wff set class
Syntax hints:    = wceq 1348   {cab 2156   E.wrex 2449   U.cuni 3796   U_ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-rex 2454  df-uni 3797  df-iun 3875
This theorem is referenced by:  iunpwss  3964  truni  4101  iunpw  4465  reluni  4734  rnuni  5022  imauni  5740  hashuni  11445  tgidm  12868  unicld  12910  tgrest  12963  txbasval  13061
  Copyright terms: Public domain W3C validator