ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniiun Unicode version

Theorem uniiun 3971
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
uniiun  |-  U. A  =  U_ x  e.  A  x
Distinct variable group:    x, A

Proof of Theorem uniiun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfuni2 3842 . 2  |-  U. A  =  { y  |  E. x  e.  A  y  e.  x }
2 df-iun 3919 . 2  |-  U_ x  e.  A  x  =  { y  |  E. x  e.  A  y  e.  x }
31, 2eqtr4i 2220 1  |-  U. A  =  U_ x  e.  A  x
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {cab 2182   E.wrex 2476   U.cuni 3840   U_ciun 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-rex 2481  df-uni 3841  df-iun 3919
This theorem is referenced by:  iunpwss  4009  truni  4146  iunpw  4516  reluni  4787  rnuni  5082  imauni  5811  hashuni  11664  tgidm  14394  unicld  14436  tgrest  14489  txbasval  14587
  Copyright terms: Public domain W3C validator