ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniiun Unicode version

Theorem uniiun 3919
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
uniiun  |-  U. A  =  U_ x  e.  A  x
Distinct variable group:    x, A

Proof of Theorem uniiun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfuni2 3791 . 2  |-  U. A  =  { y  |  E. x  e.  A  y  e.  x }
2 df-iun 3868 . 2  |-  U_ x  e.  A  x  =  { y  |  E. x  e.  A  y  e.  x }
31, 2eqtr4i 2189 1  |-  U. A  =  U_ x  e.  A  x
Colors of variables: wff set class
Syntax hints:    = wceq 1343   {cab 2151   E.wrex 2445   U.cuni 3789   U_ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-rex 2450  df-uni 3790  df-iun 3868
This theorem is referenced by:  iunpwss  3957  truni  4094  iunpw  4458  reluni  4727  rnuni  5015  imauni  5729  hashuni  11423  tgidm  12714  unicld  12756  tgrest  12809  txbasval  12907
  Copyright terms: Public domain W3C validator