ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniiun Unicode version

Theorem uniiun 4018
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
uniiun  |-  U. A  =  U_ x  e.  A  x
Distinct variable group:    x, A

Proof of Theorem uniiun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfuni2 3889 . 2  |-  U. A  =  { y  |  E. x  e.  A  y  e.  x }
2 df-iun 3966 . 2  |-  U_ x  e.  A  x  =  { y  |  E. x  e.  A  y  e.  x }
31, 2eqtr4i 2253 1  |-  U. A  =  U_ x  e.  A  x
Colors of variables: wff set class
Syntax hints:    = wceq 1395   {cab 2215   E.wrex 2509   U.cuni 3887   U_ciun 3964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-rex 2514  df-uni 3888  df-iun 3966
This theorem is referenced by:  iunpwss  4056  truni  4195  iunpw  4570  reluni  4841  rnuni  5139  imauni  5884  hashuni  11988  tgidm  14742  unicld  14784  tgrest  14837  txbasval  14935
  Copyright terms: Public domain W3C validator