ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniiun Unicode version

Theorem uniiun 3967
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
uniiun  |-  U. A  =  U_ x  e.  A  x
Distinct variable group:    x, A

Proof of Theorem uniiun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfuni2 3838 . 2  |-  U. A  =  { y  |  E. x  e.  A  y  e.  x }
2 df-iun 3915 . 2  |-  U_ x  e.  A  x  =  { y  |  E. x  e.  A  y  e.  x }
31, 2eqtr4i 2217 1  |-  U. A  =  U_ x  e.  A  x
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {cab 2179   E.wrex 2473   U.cuni 3836   U_ciun 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-rex 2478  df-uni 3837  df-iun 3915
This theorem is referenced by:  iunpwss  4005  truni  4142  iunpw  4512  reluni  4783  rnuni  5078  imauni  5805  hashuni  11628  tgidm  14253  unicld  14295  tgrest  14348  txbasval  14446
  Copyright terms: Public domain W3C validator