ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intiin GIF version

Theorem intiin 3971
Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
intiin 𝐴 = 𝑥𝐴 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem intiin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfint2 3876 . 2 𝐴 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
2 df-iin 3919 . 2 𝑥𝐴 𝑥 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
31, 2eqtr4i 2220 1 𝐴 = 𝑥𝐴 𝑥
Colors of variables: wff set class
Syntax hints:   = wceq 1364  {cab 2182  wral 2475   cint 3874   ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-ral 2480  df-int 3875  df-iin 3919
This theorem is referenced by:  relint  4787  ixpintm  6784
  Copyright terms: Public domain W3C validator