Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intiin | GIF version |
Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
intiin | ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 3811 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iin 3854 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2181 | 1 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 {cab 2143 ∀wral 2435 ∩ cint 3809 ∩ ciin 3852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-ral 2440 df-int 3810 df-iin 3854 |
This theorem is referenced by: relint 4712 ixpintm 6672 |
Copyright terms: Public domain | W3C validator |