ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relint Unicode version

Theorem relint 4798
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Distinct variable group:    x, A

Proof of Theorem relint
StepHypRef Expression
1 reliin 4796 . 2  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^|_ x  e.  A  x )
2 intiin 3981 . . 3  |-  |^| A  =  |^|_ x  e.  A  x
32releqi 4757 . 2  |-  ( Rel  |^| A  <->  Rel  |^|_ x  e.  A  x )
41, 3sylibr 134 1  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2484   |^|cint 3884   |^|_ciin 3927   Rel wrel 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-int 3885  df-iin 3929  df-rel 4681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator