ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relint Unicode version

Theorem relint 4735
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Distinct variable group:    x, A

Proof of Theorem relint
StepHypRef Expression
1 reliin 4733 . 2  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^|_ x  e.  A  x )
2 intiin 3927 . . 3  |-  |^| A  =  |^|_ x  e.  A  x
32releqi 4694 . 2  |-  ( Rel  |^| A  <->  Rel  |^|_ x  e.  A  x )
41, 3sylibr 133 1  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2449   |^|cint 3831   |^|_ciin 3874   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-int 3832  df-iin 3876  df-rel 4618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator