ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relint Unicode version

Theorem relint 4783
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Distinct variable group:    x, A

Proof of Theorem relint
StepHypRef Expression
1 reliin 4781 . 2  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^|_ x  e.  A  x )
2 intiin 3967 . . 3  |-  |^| A  =  |^|_ x  e.  A  x
32releqi 4742 . 2  |-  ( Rel  |^| A  <->  Rel  |^|_ x  e.  A  x )
41, 3sylibr 134 1  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2473   |^|cint 3870   |^|_ciin 3913   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-int 3871  df-iin 3915  df-rel 4666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator