ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relint Unicode version

Theorem relint 4812
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Distinct variable group:    x, A

Proof of Theorem relint
StepHypRef Expression
1 reliin 4810 . 2  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^|_ x  e.  A  x )
2 intiin 3991 . . 3  |-  |^| A  =  |^|_ x  e.  A  x
32releqi 4771 . 2  |-  ( Rel  |^| A  <->  Rel  |^|_ x  e.  A  x )
41, 3sylibr 134 1  |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2486   |^|cint 3894   |^|_ciin 3937   Rel wrel 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3176  df-ss 3183  df-int 3895  df-iin 3939  df-rel 4695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator