ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inundifss Unicode version

Theorem inundifss 3492
Description: The intersection and class difference of a class with another class are contained in the original class. In classical logic we'd be able to make a stronger statement: that everything in the original class is in the intersection or the difference (that is, this theorem would be equality rather than subset). (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
inundifss  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  C_  A

Proof of Theorem inundifss
StepHypRef Expression
1 inss1 3347 . 2  |-  ( A  i^i  B )  C_  A
2 difss 3253 . 2  |-  ( A 
\  B )  C_  A
31, 2unssi 3302 1  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  C_  A
Colors of variables: wff set class
Syntax hints:    \ cdif 3118    u. cun 3119    i^i cin 3120    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134
This theorem is referenced by:  resasplitss  5377
  Copyright terms: Public domain W3C validator