ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjdif2 Unicode version

Theorem disjdif2 3503
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  B )  =  A )

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 3249 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  ( A  i^i  B ) )  =  ( A  \  (/) ) )
2 difin 3374 . 2  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
3 dif0 3495 . 2  |-  ( A 
\  (/) )  =  A
41, 2, 33eqtr3g 2233 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    \ cdif 3128    i^i cin 3130   (/)c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425
This theorem is referenced by:  setsfun0  12500
  Copyright terms: Public domain W3C validator