ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjdif2 Unicode version

Theorem disjdif2 3472
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  B )  =  A )

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 3219 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  ( A  i^i  B ) )  =  ( A  \  (/) ) )
2 difin 3344 . 2  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
3 dif0 3464 . 2  |-  ( A 
\  (/) )  =  A
41, 2, 33eqtr3g 2213 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    \ cdif 3099    i^i cin 3101   (/)c0 3394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rab 2444  df-v 2714  df-dif 3104  df-in 3108  df-ss 3115  df-nul 3395
This theorem is referenced by:  setsfun0  12237
  Copyright terms: Public domain W3C validator