ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjdif2 Unicode version

Theorem disjdif2 3487
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  B )  =  A )

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 3234 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  ( A  i^i  B ) )  =  ( A  \  (/) ) )
2 difin 3359 . 2  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
3 dif0 3479 . 2  |-  ( A 
\  (/) )  =  A
41, 2, 33eqtr3g 2222 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    \ cdif 3113    i^i cin 3115   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  setsfun0  12430
  Copyright terms: Public domain W3C validator