ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjdif2 Unicode version

Theorem disjdif2 3539
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  B )  =  A )

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 3285 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  ( A  i^i  B ) )  =  ( A  \  (/) ) )
2 difin 3410 . 2  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
3 dif0 3531 . 2  |-  ( A 
\  (/) )  =  A
41, 2, 33eqtr3g 2261 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
\  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    \ cdif 3163    i^i cin 3165   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461
This theorem is referenced by:  opwo0id  4293  setsfun0  12868
  Copyright terms: Public domain W3C validator