ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resasplitss Unicode version

Theorem resasplitss 5477
Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.)
Assertion
Ref Expression
resasplitss  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( F  u.  G ) )

Proof of Theorem resasplitss
StepHypRef Expression
1 unidm 3324 . . . 4  |-  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  =  ( F  |`  ( A  i^i  B
) )
21uneq1i 3331 . . 3  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
3 un4 3341 . . . 4  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )
4 simp3 1002 . . . . . . 7  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )
54uneq1d 3334 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
65uneq2d 3335 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B
) ) )  u.  ( ( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )  =  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
7 resundi 4991 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )
8 inundifss 3546 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  C_  A
9 ssres2 5005 . . . . . . . 8  |-  ( ( ( A  i^i  B
)  u.  ( A 
\  B ) ) 
C_  A  ->  ( F  |`  ( ( A  i^i  B )  u.  ( A  \  B
) ) )  C_  ( F  |`  A ) )
108, 9ax-mp 5 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  C_  ( F  |`  A )
117, 10eqsstrri 3234 . . . . . 6  |-  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  C_  ( F  |`  A )
12 resundi 4991 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
13 incom 3373 . . . . . . . . . 10  |-  ( A  i^i  B )  =  ( B  i^i  A
)
1413uneq1i 3331 . . . . . . . . 9  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  ( ( B  i^i  A )  u.  ( B 
\  A ) )
15 inundifss 3546 . . . . . . . . 9  |-  ( ( B  i^i  A )  u.  ( B  \  A ) )  C_  B
1614, 15eqsstri 3233 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  C_  B
17 ssres2 5005 . . . . . . . 8  |-  ( ( ( A  i^i  B
)  u.  ( B 
\  A ) ) 
C_  B  ->  ( G  |`  ( ( A  i^i  B )  u.  ( B  \  A
) ) )  C_  ( G  |`  B ) )
1816, 17ax-mp 5 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  C_  ( G  |`  B )
1912, 18eqsstrri 3234 . . . . . 6  |-  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )  C_  ( G  |`  B )
20 unss12 3353 . . . . . 6  |-  ( ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B
) ) )  C_  ( F  |`  A )  /\  ( ( G  |`  ( A  i^i  B
) )  u.  ( G  |`  ( B  \  A ) ) ) 
C_  ( G  |`  B ) )  -> 
( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( G  |`  ( A  i^i  B
) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( ( F  |`  A )  u.  ( G  |`  B ) ) )
2111, 19, 20mp2an 426 . . . . 5  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( ( F  |`  A )  u.  ( G  |`  B ) )
226, 21eqsstrdi 3253 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B
) ) )  u.  ( ( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A
) ) ) ) 
C_  ( ( F  |`  A )  u.  ( G  |`  B ) ) )
233, 22eqsstrrid 3248 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B
) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) ) 
C_  ( ( F  |`  A )  u.  ( G  |`  B ) ) )
242, 23eqsstrrid 3248 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( ( F  |`  A )  u.  ( G  |`  B ) ) )
25 fnresdm 5404 . . . 4  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
26 fnresdm 5404 . . . 4  |-  ( G  Fn  B  ->  ( G  |`  B )  =  G )
27 uneq12 3330 . . . 4  |-  ( ( ( F  |`  A )  =  F  /\  ( G  |`  B )  =  G )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
2825, 26, 27syl2an 289 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G ) )
29283adant3 1020 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
3024, 29sseqtrd 3239 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( F  u.  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    \ cdif 3171    u. cun 3172    i^i cin 3173    C_ wss 3174    |` cres 4695    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-dm 4703  df-res 4705  df-fun 5292  df-fn 5293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator