ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resasplitss Unicode version

Theorem resasplitss 5433
Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.)
Assertion
Ref Expression
resasplitss  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( F  u.  G ) )

Proof of Theorem resasplitss
StepHypRef Expression
1 unidm 3302 . . . 4  |-  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  =  ( F  |`  ( A  i^i  B
) )
21uneq1i 3309 . . 3  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
3 un4 3319 . . . 4  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )
4 simp3 1001 . . . . . . 7  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )
54uneq1d 3312 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
65uneq2d 3313 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B
) ) )  u.  ( ( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )  =  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
7 resundi 4955 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )
8 inundifss 3524 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  C_  A
9 ssres2 4969 . . . . . . . 8  |-  ( ( ( A  i^i  B
)  u.  ( A 
\  B ) ) 
C_  A  ->  ( F  |`  ( ( A  i^i  B )  u.  ( A  \  B
) ) )  C_  ( F  |`  A ) )
108, 9ax-mp 5 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  C_  ( F  |`  A )
117, 10eqsstrri 3212 . . . . . 6  |-  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  C_  ( F  |`  A )
12 resundi 4955 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
13 incom 3351 . . . . . . . . . 10  |-  ( A  i^i  B )  =  ( B  i^i  A
)
1413uneq1i 3309 . . . . . . . . 9  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  ( ( B  i^i  A )  u.  ( B 
\  A ) )
15 inundifss 3524 . . . . . . . . 9  |-  ( ( B  i^i  A )  u.  ( B  \  A ) )  C_  B
1614, 15eqsstri 3211 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  C_  B
17 ssres2 4969 . . . . . . . 8  |-  ( ( ( A  i^i  B
)  u.  ( B 
\  A ) ) 
C_  B  ->  ( G  |`  ( ( A  i^i  B )  u.  ( B  \  A
) ) )  C_  ( G  |`  B ) )
1816, 17ax-mp 5 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  C_  ( G  |`  B )
1912, 18eqsstrri 3212 . . . . . 6  |-  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )  C_  ( G  |`  B )
20 unss12 3331 . . . . . 6  |-  ( ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B
) ) )  C_  ( F  |`  A )  /\  ( ( G  |`  ( A  i^i  B
) )  u.  ( G  |`  ( B  \  A ) ) ) 
C_  ( G  |`  B ) )  -> 
( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( G  |`  ( A  i^i  B
) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( ( F  |`  A )  u.  ( G  |`  B ) ) )
2111, 19, 20mp2an 426 . . . . 5  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( ( F  |`  A )  u.  ( G  |`  B ) )
226, 21eqsstrdi 3231 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B
) ) )  u.  ( ( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A
) ) ) ) 
C_  ( ( F  |`  A )  u.  ( G  |`  B ) ) )
233, 22eqsstrrid 3226 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B
) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) ) 
C_  ( ( F  |`  A )  u.  ( G  |`  B ) ) )
242, 23eqsstrrid 3226 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( ( F  |`  A )  u.  ( G  |`  B ) ) )
25 fnresdm 5363 . . . 4  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
26 fnresdm 5363 . . . 4  |-  ( G  Fn  B  ->  ( G  |`  B )  =  G )
27 uneq12 3308 . . . 4  |-  ( ( ( F  |`  A )  =  F  /\  ( G  |`  B )  =  G )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
2825, 26, 27syl2an 289 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G ) )
29283adant3 1019 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
3024, 29sseqtrd 3217 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) )  C_  ( F  u.  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    \ cdif 3150    u. cun 3151    i^i cin 3152    C_ wss 3153    |` cres 4661    Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-dm 4669  df-res 4671  df-fun 5256  df-fn 5257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator