| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resasplitss | Unicode version | ||
| Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.) |
| Ref | Expression |
|---|---|
| resasplitss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidm 3316 |
. . . 4
| |
| 2 | 1 | uneq1i 3323 |
. . 3
|
| 3 | un4 3333 |
. . . 4
| |
| 4 | simp3 1002 |
. . . . . . 7
| |
| 5 | 4 | uneq1d 3326 |
. . . . . 6
|
| 6 | 5 | uneq2d 3327 |
. . . . 5
|
| 7 | resundi 4972 |
. . . . . . 7
| |
| 8 | inundifss 3538 |
. . . . . . . 8
| |
| 9 | ssres2 4986 |
. . . . . . . 8
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . 7
|
| 11 | 7, 10 | eqsstrri 3226 |
. . . . . 6
|
| 12 | resundi 4972 |
. . . . . . 7
| |
| 13 | incom 3365 |
. . . . . . . . . 10
| |
| 14 | 13 | uneq1i 3323 |
. . . . . . . . 9
|
| 15 | inundifss 3538 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqsstri 3225 |
. . . . . . . 8
|
| 17 | ssres2 4986 |
. . . . . . . 8
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . 7
|
| 19 | 12, 18 | eqsstrri 3226 |
. . . . . 6
|
| 20 | unss12 3345 |
. . . . . 6
| |
| 21 | 11, 19, 20 | mp2an 426 |
. . . . 5
|
| 22 | 6, 21 | eqsstrdi 3245 |
. . . 4
|
| 23 | 3, 22 | eqsstrrid 3240 |
. . 3
|
| 24 | 2, 23 | eqsstrrid 3240 |
. 2
|
| 25 | fnresdm 5385 |
. . . 4
| |
| 26 | fnresdm 5385 |
. . . 4
| |
| 27 | uneq12 3322 |
. . . 4
| |
| 28 | 25, 26, 27 | syl2an 289 |
. . 3
|
| 29 | 28 | 3adant3 1020 |
. 2
|
| 30 | 24, 29 | sseqtrd 3231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-dm 4685 df-res 4687 df-fun 5273 df-fn 5274 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |