| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > resasplitss | Unicode version | ||
| Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| resasplitss | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unidm 3306 | 
. . . 4
 | |
| 2 | 1 | uneq1i 3313 | 
. . 3
 | 
| 3 | un4 3323 | 
. . . 4
 | |
| 4 | simp3 1001 | 
. . . . . . 7
 | |
| 5 | 4 | uneq1d 3316 | 
. . . . . 6
 | 
| 6 | 5 | uneq2d 3317 | 
. . . . 5
 | 
| 7 | resundi 4959 | 
. . . . . . 7
 | |
| 8 | inundifss 3528 | 
. . . . . . . 8
 | |
| 9 | ssres2 4973 | 
. . . . . . . 8
 | |
| 10 | 8, 9 | ax-mp 5 | 
. . . . . . 7
 | 
| 11 | 7, 10 | eqsstrri 3216 | 
. . . . . 6
 | 
| 12 | resundi 4959 | 
. . . . . . 7
 | |
| 13 | incom 3355 | 
. . . . . . . . . 10
 | |
| 14 | 13 | uneq1i 3313 | 
. . . . . . . . 9
 | 
| 15 | inundifss 3528 | 
. . . . . . . . 9
 | |
| 16 | 14, 15 | eqsstri 3215 | 
. . . . . . . 8
 | 
| 17 | ssres2 4973 | 
. . . . . . . 8
 | |
| 18 | 16, 17 | ax-mp 5 | 
. . . . . . 7
 | 
| 19 | 12, 18 | eqsstrri 3216 | 
. . . . . 6
 | 
| 20 | unss12 3335 | 
. . . . . 6
 | |
| 21 | 11, 19, 20 | mp2an 426 | 
. . . . 5
 | 
| 22 | 6, 21 | eqsstrdi 3235 | 
. . . 4
 | 
| 23 | 3, 22 | eqsstrrid 3230 | 
. . 3
 | 
| 24 | 2, 23 | eqsstrrid 3230 | 
. 2
 | 
| 25 | fnresdm 5367 | 
. . . 4
 | |
| 26 | fnresdm 5367 | 
. . . 4
 | |
| 27 | uneq12 3312 | 
. . . 4
 | |
| 28 | 25, 26, 27 | syl2an 289 | 
. . 3
 | 
| 29 | 28 | 3adant3 1019 | 
. 2
 | 
| 30 | 24, 29 | sseqtrd 3221 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-dm 4673 df-res 4675 df-fun 5260 df-fn 5261 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |