| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resasplitss | Unicode version | ||
| Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.) |
| Ref | Expression |
|---|---|
| resasplitss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidm 3324 |
. . . 4
| |
| 2 | 1 | uneq1i 3331 |
. . 3
|
| 3 | un4 3341 |
. . . 4
| |
| 4 | simp3 1002 |
. . . . . . 7
| |
| 5 | 4 | uneq1d 3334 |
. . . . . 6
|
| 6 | 5 | uneq2d 3335 |
. . . . 5
|
| 7 | resundi 4991 |
. . . . . . 7
| |
| 8 | inundifss 3546 |
. . . . . . . 8
| |
| 9 | ssres2 5005 |
. . . . . . . 8
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . 7
|
| 11 | 7, 10 | eqsstrri 3234 |
. . . . . 6
|
| 12 | resundi 4991 |
. . . . . . 7
| |
| 13 | incom 3373 |
. . . . . . . . . 10
| |
| 14 | 13 | uneq1i 3331 |
. . . . . . . . 9
|
| 15 | inundifss 3546 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqsstri 3233 |
. . . . . . . 8
|
| 17 | ssres2 5005 |
. . . . . . . 8
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . 7
|
| 19 | 12, 18 | eqsstrri 3234 |
. . . . . 6
|
| 20 | unss12 3353 |
. . . . . 6
| |
| 21 | 11, 19, 20 | mp2an 426 |
. . . . 5
|
| 22 | 6, 21 | eqsstrdi 3253 |
. . . 4
|
| 23 | 3, 22 | eqsstrrid 3248 |
. . 3
|
| 24 | 2, 23 | eqsstrrid 3248 |
. 2
|
| 25 | fnresdm 5404 |
. . . 4
| |
| 26 | fnresdm 5404 |
. . . 4
| |
| 27 | uneq12 3330 |
. . . 4
| |
| 28 | 25, 26, 27 | syl2an 289 |
. . 3
|
| 29 | 28 | 3adant3 1020 |
. 2
|
| 30 | 24, 29 | sseqtrd 3239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-dm 4703 df-res 4705 df-fun 5292 df-fn 5293 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |