Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resasplitss | Unicode version |
Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.) |
Ref | Expression |
---|---|
resasplitss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidm 3265 | . . . 4 | |
2 | 1 | uneq1i 3272 | . . 3 |
3 | un4 3282 | . . . 4 | |
4 | simp3 989 | . . . . . . 7 | |
5 | 4 | uneq1d 3275 | . . . . . 6 |
6 | 5 | uneq2d 3276 | . . . . 5 |
7 | resundi 4897 | . . . . . . 7 | |
8 | inundifss 3486 | . . . . . . . 8 | |
9 | ssres2 4911 | . . . . . . . 8 | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 |
11 | 7, 10 | eqsstrri 3175 | . . . . . 6 |
12 | resundi 4897 | . . . . . . 7 | |
13 | incom 3314 | . . . . . . . . . 10 | |
14 | 13 | uneq1i 3272 | . . . . . . . . 9 |
15 | inundifss 3486 | . . . . . . . . 9 | |
16 | 14, 15 | eqsstri 3174 | . . . . . . . 8 |
17 | ssres2 4911 | . . . . . . . 8 | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 |
19 | 12, 18 | eqsstrri 3175 | . . . . . 6 |
20 | unss12 3294 | . . . . . 6 | |
21 | 11, 19, 20 | mp2an 423 | . . . . 5 |
22 | 6, 21 | eqsstrdi 3194 | . . . 4 |
23 | 3, 22 | eqsstrrid 3189 | . . 3 |
24 | 2, 23 | eqsstrrid 3189 | . 2 |
25 | fnresdm 5297 | . . . 4 | |
26 | fnresdm 5297 | . . . 4 | |
27 | uneq12 3271 | . . . 4 | |
28 | 25, 26, 27 | syl2an 287 | . . 3 |
29 | 28 | 3adant3 1007 | . 2 |
30 | 24, 29 | sseqtrd 3180 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 wceq 1343 cdif 3113 cun 3114 cin 3115 wss 3116 cres 4606 wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-dm 4614 df-res 4616 df-fun 5190 df-fn 5191 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |