Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resasplitss | Unicode version |
Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.) |
Ref | Expression |
---|---|
resasplitss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidm 3270 | . . . 4 | |
2 | 1 | uneq1i 3277 | . . 3 |
3 | un4 3287 | . . . 4 | |
4 | simp3 994 | . . . . . . 7 | |
5 | 4 | uneq1d 3280 | . . . . . 6 |
6 | 5 | uneq2d 3281 | . . . . 5 |
7 | resundi 4904 | . . . . . . 7 | |
8 | inundifss 3492 | . . . . . . . 8 | |
9 | ssres2 4918 | . . . . . . . 8 | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 |
11 | 7, 10 | eqsstrri 3180 | . . . . . 6 |
12 | resundi 4904 | . . . . . . 7 | |
13 | incom 3319 | . . . . . . . . . 10 | |
14 | 13 | uneq1i 3277 | . . . . . . . . 9 |
15 | inundifss 3492 | . . . . . . . . 9 | |
16 | 14, 15 | eqsstri 3179 | . . . . . . . 8 |
17 | ssres2 4918 | . . . . . . . 8 | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 |
19 | 12, 18 | eqsstrri 3180 | . . . . . 6 |
20 | unss12 3299 | . . . . . 6 | |
21 | 11, 19, 20 | mp2an 424 | . . . . 5 |
22 | 6, 21 | eqsstrdi 3199 | . . . 4 |
23 | 3, 22 | eqsstrrid 3194 | . . 3 |
24 | 2, 23 | eqsstrrid 3194 | . 2 |
25 | fnresdm 5307 | . . . 4 | |
26 | fnresdm 5307 | . . . 4 | |
27 | uneq12 3276 | . . . 4 | |
28 | 25, 26, 27 | syl2an 287 | . . 3 |
29 | 28 | 3adant3 1012 | . 2 |
30 | 24, 29 | sseqtrd 3185 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wceq 1348 cdif 3118 cun 3119 cin 3120 wss 3121 cres 4613 wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-dm 4621 df-res 4623 df-fun 5200 df-fn 5201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |