| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resasplitss | Unicode version | ||
| Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.) |
| Ref | Expression |
|---|---|
| resasplitss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidm 3307 |
. . . 4
| |
| 2 | 1 | uneq1i 3314 |
. . 3
|
| 3 | un4 3324 |
. . . 4
| |
| 4 | simp3 1001 |
. . . . . . 7
| |
| 5 | 4 | uneq1d 3317 |
. . . . . 6
|
| 6 | 5 | uneq2d 3318 |
. . . . 5
|
| 7 | resundi 4960 |
. . . . . . 7
| |
| 8 | inundifss 3529 |
. . . . . . . 8
| |
| 9 | ssres2 4974 |
. . . . . . . 8
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . 7
|
| 11 | 7, 10 | eqsstrri 3217 |
. . . . . 6
|
| 12 | resundi 4960 |
. . . . . . 7
| |
| 13 | incom 3356 |
. . . . . . . . . 10
| |
| 14 | 13 | uneq1i 3314 |
. . . . . . . . 9
|
| 15 | inundifss 3529 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqsstri 3216 |
. . . . . . . 8
|
| 17 | ssres2 4974 |
. . . . . . . 8
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . 7
|
| 19 | 12, 18 | eqsstrri 3217 |
. . . . . 6
|
| 20 | unss12 3336 |
. . . . . 6
| |
| 21 | 11, 19, 20 | mp2an 426 |
. . . . 5
|
| 22 | 6, 21 | eqsstrdi 3236 |
. . . 4
|
| 23 | 3, 22 | eqsstrrid 3231 |
. . 3
|
| 24 | 2, 23 | eqsstrrid 3231 |
. 2
|
| 25 | fnresdm 5370 |
. . . 4
| |
| 26 | fnresdm 5370 |
. . . 4
| |
| 27 | uneq12 3313 |
. . . 4
| |
| 28 | 25, 26, 27 | syl2an 289 |
. . 3
|
| 29 | 28 | 3adant3 1019 |
. 2
|
| 30 | 24, 29 | sseqtrd 3222 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-dm 4674 df-res 4676 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |