ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssi Unicode version

Theorem unssi 3334
Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
unssi.1  |-  A  C_  C
unssi.2  |-  B  C_  C
Assertion
Ref Expression
unssi  |-  ( A  u.  B )  C_  C

Proof of Theorem unssi
StepHypRef Expression
1 unssi.1 . . 3  |-  A  C_  C
2 unssi.2 . . 3  |-  B  C_  C
31, 2pm3.2i 272 . 2  |-  ( A 
C_  C  /\  B  C_  C )
4 unss 3333 . 2  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
53, 4mpbi 145 1  |-  ( A  u.  B )  C_  C
Colors of variables: wff set class
Syntax hints:    /\ wa 104    u. cun 3151    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166
This theorem is referenced by:  undifabs  3523  inundifss  3524  dmrnssfld  4925  caserel  7146  ltrelxr  8080  nn0ssre  9244  nn0ssz  9335  strleun  12722
  Copyright terms: Public domain W3C validator