Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unssi | Unicode version |
Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
unssi.1 | |
unssi.2 |
Ref | Expression |
---|---|
unssi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssi.1 | . . 3 | |
2 | unssi.2 | . . 3 | |
3 | 1, 2 | pm3.2i 270 | . 2 |
4 | unss 3295 | . 2 | |
5 | 3, 4 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 cun 3113 wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 |
This theorem is referenced by: undifabs 3484 inundifss 3485 dmrnssfld 4866 caserel 7048 ltrelxr 7955 nn0ssre 9114 nn0ssz 9205 strleun 12479 |
Copyright terms: Public domain | W3C validator |