Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unssi | Unicode version |
Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
unssi.1 | |
unssi.2 |
Ref | Expression |
---|---|
unssi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssi.1 | . . 3 | |
2 | unssi.2 | . . 3 | |
3 | 1, 2 | pm3.2i 270 | . 2 |
4 | unss 3301 | . 2 | |
5 | 3, 4 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 cun 3119 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: undifabs 3491 inundifss 3492 dmrnssfld 4874 caserel 7064 ltrelxr 7980 nn0ssre 9139 nn0ssz 9230 strleun 12507 |
Copyright terms: Public domain | W3C validator |