| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inundifss | GIF version | ||
| Description: The intersection and class difference of a class with another class are contained in the original class. In classical logic we'd be able to make a stronger statement: that everything in the original class is in the intersection or the difference (that is, this theorem would be equality rather than subset). (Contributed by Jim Kingdon, 4-Aug-2018.) |
| Ref | Expression |
|---|---|
| inundifss | ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3392 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | difss 3298 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 3 | 1, 2 | unssi 3347 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∖ cdif 3162 ∪ cun 3163 ∩ cin 3164 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 |
| This theorem is referenced by: resasplitss 5454 |
| Copyright terms: Public domain | W3C validator |