ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inundifss GIF version

Theorem inundifss 3486
Description: The intersection and class difference of a class with another class are contained in the original class. In classical logic we'd be able to make a stronger statement: that everything in the original class is in the intersection or the difference (that is, this theorem would be equality rather than subset). (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
inundifss ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴

Proof of Theorem inundifss
StepHypRef Expression
1 inss1 3342 . 2 (𝐴𝐵) ⊆ 𝐴
2 difss 3248 . 2 (𝐴𝐵) ⊆ 𝐴
31, 2unssi 3297 1 ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  cdif 3113  cun 3114  cin 3115  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by:  resasplitss  5367
  Copyright terms: Public domain W3C validator