| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inundifss | GIF version | ||
| Description: The intersection and class difference of a class with another class are contained in the original class. In classical logic we'd be able to make a stronger statement: that everything in the original class is in the intersection or the difference (that is, this theorem would be equality rather than subset). (Contributed by Jim Kingdon, 4-Aug-2018.) |
| Ref | Expression |
|---|---|
| inundifss | ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3401 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | difss 3307 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 3 | 1, 2 | unssi 3356 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∖ cdif 3171 ∪ cun 3172 ∩ cin 3173 ⊆ wss 3174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 |
| This theorem is referenced by: resasplitss 5477 |
| Copyright terms: Public domain | W3C validator |