ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inundifss GIF version

Theorem inundifss 3569
Description: The intersection and class difference of a class with another class are contained in the original class. In classical logic we'd be able to make a stronger statement: that everything in the original class is in the intersection or the difference (that is, this theorem would be equality rather than subset). (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
inundifss ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴

Proof of Theorem inundifss
StepHypRef Expression
1 inss1 3424 . 2 (𝐴𝐵) ⊆ 𝐴
2 difss 3330 . 2 (𝐴𝐵) ⊆ 𝐴
31, 2unssi 3379 1 ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  cdif 3194  cun 3195  cin 3196  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  resasplitss  5504
  Copyright terms: Public domain W3C validator