Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2d Unicode version

Theorem iota2d 5108
 Description: A condition that allows us to represent "the unique element such that " with a class expression . (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1
iota2df.2
iota2df.3
Assertion
Ref Expression
iota2d
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem iota2d
StepHypRef Expression
1 iota2df.1 . 2
2 iota2df.2 . 2
3 iota2df.3 . 2
4 nfv 1508 . 2
5 nfvd 1509 . 2
6 nfcvd 2280 . 2
71, 2, 3, 4, 5, 6iota2df 5107 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1331   wcel 1480  weu 1997  cio 5081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-sn 3528  df-pr 3529  df-uni 3732  df-iota 5083 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator