ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2d Unicode version

Theorem iota2d 5258
Description: A condition that allows us to represent "the unique element such that  ph " with a class expression  A. (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1  |-  ( ph  ->  B  e.  V )
iota2df.2  |-  ( ph  ->  E! x ps )
iota2df.3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
iota2d  |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
Distinct variable groups:    x, B    ph, x    ch, x
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem iota2d
StepHypRef Expression
1 iota2df.1 . 2  |-  ( ph  ->  B  e.  V )
2 iota2df.2 . 2  |-  ( ph  ->  E! x ps )
3 iota2df.3 . 2  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
4 nfv 1551 . 2  |-  F/ x ph
5 nfvd 1552 . 2  |-  ( ph  ->  F/ x ch )
6 nfcvd 2349 . 2  |-  ( ph  -> 
F/_ x B )
71, 2, 3, 4, 5, 6iota2df 5257 1  |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E!weu 2054    e. wcel 2176   iotacio 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-sn 3639  df-pr 3640  df-uni 3851  df-iota 5232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator