ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2d Unicode version

Theorem iota2d 5304
Description: A condition that allows us to represent "the unique element such that  ph " with a class expression  A. (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1  |-  ( ph  ->  B  e.  V )
iota2df.2  |-  ( ph  ->  E! x ps )
iota2df.3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
iota2d  |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
Distinct variable groups:    x, B    ph, x    ch, x
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem iota2d
StepHypRef Expression
1 iota2df.1 . 2  |-  ( ph  ->  B  e.  V )
2 iota2df.2 . 2  |-  ( ph  ->  E! x ps )
3 iota2df.3 . 2  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
4 nfv 1574 . 2  |-  F/ x ph
5 nfvd 1575 . 2  |-  ( ph  ->  F/ x ch )
6 nfcvd 2373 . 2  |-  ( ph  -> 
F/_ x B )
71, 2, 3, 4, 5, 6iota2df 5303 1  |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E!weu 2077    e. wcel 2200   iotacio 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3888  df-iota 5277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator