Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iota2d | Unicode version |
Description: A condition that allows us to represent "the unique element such that " with a class expression . (Contributed by NM, 30-Dec-2014.) |
Ref | Expression |
---|---|
iota2df.1 | |
iota2df.2 | |
iota2df.3 |
Ref | Expression |
---|---|
iota2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota2df.1 | . 2 | |
2 | iota2df.2 | . 2 | |
3 | iota2df.3 | . 2 | |
4 | nfv 1521 | . 2 | |
5 | nfvd 1522 | . 2 | |
6 | nfcvd 2313 | . 2 | |
7 | 1, 2, 3, 4, 5, 6 | iota2df 5184 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 weu 2019 wcel 2141 cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |