| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iota2d | GIF version | ||
| Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) | 
| iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) | 
| iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| iota2d | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | iota2df.2 | . 2 ⊢ (𝜑 → ∃!𝑥𝜓) | |
| 3 | iota2df.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 4 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfvd 1543 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 6 | nfcvd 2340 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | iota2df 5244 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃!weu 2045 ∈ wcel 2167 ℩cio 5217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |