ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2d GIF version

Theorem iota2d 5178
Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1 (𝜑𝐵𝑉)
iota2df.2 (𝜑 → ∃!𝑥𝜓)
iota2df.3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
iota2d (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem iota2d
StepHypRef Expression
1 iota2df.1 . 2 (𝜑𝐵𝑉)
2 iota2df.2 . 2 (𝜑 → ∃!𝑥𝜓)
3 iota2df.3 . 2 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
4 nfv 1516 . 2 𝑥𝜑
5 nfvd 1517 . 2 (𝜑 → Ⅎ𝑥𝜒)
6 nfcvd 2309 . 2 (𝜑𝑥𝐵)
71, 2, 3, 4, 5, 6iota2df 5177 1 (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  ∃!weu 2014  wcel 2136  cio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator