ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2d GIF version

Theorem iota2d 5245
Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1 (𝜑𝐵𝑉)
iota2df.2 (𝜑 → ∃!𝑥𝜓)
iota2df.3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
iota2d (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem iota2d
StepHypRef Expression
1 iota2df.1 . 2 (𝜑𝐵𝑉)
2 iota2df.2 . 2 (𝜑 → ∃!𝑥𝜓)
3 iota2df.3 . 2 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
4 nfv 1542 . 2 𝑥𝜑
5 nfvd 1543 . 2 (𝜑 → Ⅎ𝑥𝜒)
6 nfcvd 2340 . 2 (𝜑𝑥𝐵)
71, 2, 3, 4, 5, 6iota2df 5244 1 (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  ∃!weu 2045  wcel 2167  cio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator