ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotacl Unicode version

Theorem iotacl 5243
Description: Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 5219).

(Contributed by Andrew Salmon, 1-Aug-2011.)

Assertion
Ref Expression
iotacl  |-  ( E! x ph  ->  ( iota x ph )  e. 
{ x  |  ph } )

Proof of Theorem iotacl
StepHypRef Expression
1 iota4 5238 . 2  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
2 df-sbc 2990 . 2  |-  ( [. ( iota x ph )  /  x ]. ph  <->  ( iota x ph )  e.  {
x  |  ph }
)
31, 2sylib 122 1  |-  ( E! x ph  ->  ( iota x ph )  e. 
{ x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E!weu 2045    e. wcel 2167   {cab 2182   [.wsbc 2989   iotacio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219
This theorem is referenced by:  riotacl2  5891  eroprf  6687
  Copyright terms: Public domain W3C validator