Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotacl | Unicode version |
Description: Membership law for
descriptions.
This can useful for expanding an unbounded iota-based definition (see df-iota 5135). (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
iotacl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota4 5153 | . 2 | |
2 | df-sbc 2938 | . 2 | |
3 | 1, 2 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 weu 2006 wcel 2128 cab 2143 wsbc 2937 cio 5133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-sn 3566 df-pr 3567 df-uni 3773 df-iota 5135 |
This theorem is referenced by: riotacl2 5793 eroprf 6573 |
Copyright terms: Public domain | W3C validator |