ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotacl Unicode version

Theorem iotacl 5302
Description: Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 5277).

(Contributed by Andrew Salmon, 1-Aug-2011.)

Assertion
Ref Expression
iotacl  |-  ( E! x ph  ->  ( iota x ph )  e. 
{ x  |  ph } )

Proof of Theorem iotacl
StepHypRef Expression
1 iota4 5297 . 2  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
2 df-sbc 3029 . 2  |-  ( [. ( iota x ph )  /  x ]. ph  <->  ( iota x ph )  e.  {
x  |  ph }
)
31, 2sylib 122 1  |-  ( E! x ph  ->  ( iota x ph )  e. 
{ x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E!weu 2077    e. wcel 2200   {cab 2215   [.wsbc 3028   iotacio 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3888  df-iota 5277
This theorem is referenced by:  riotacl2  5968  eroprf  6773
  Copyright terms: Public domain W3C validator