ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotacl Unicode version

Theorem iotacl 5158
Description: Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 5135).

(Contributed by Andrew Salmon, 1-Aug-2011.)

Assertion
Ref Expression
iotacl  |-  ( E! x ph  ->  ( iota x ph )  e. 
{ x  |  ph } )

Proof of Theorem iotacl
StepHypRef Expression
1 iota4 5153 . 2  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
2 df-sbc 2938 . 2  |-  ( [. ( iota x ph )  /  x ]. ph  <->  ( iota x ph )  e.  {
x  |  ph }
)
31, 2sylib 121 1  |-  ( E! x ph  ->  ( iota x ph )  e. 
{ x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E!weu 2006    e. wcel 2128   {cab 2143   [.wsbc 2937   iotacio 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-sn 3566  df-pr 3567  df-uni 3773  df-iota 5135
This theorem is referenced by:  riotacl2  5793  eroprf  6573
  Copyright terms: Public domain W3C validator