ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabi Unicode version

Theorem iotabi 5228
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotabi  |-  ( A. x ( ph  <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )

Proof of Theorem iotabi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 abbi 2310 . . . . . 6  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )
21biimpi 120 . . . . 5  |-  ( A. x ( ph  <->  ps )  ->  { x  |  ph }  =  { x  |  ps } )
32eqeq1d 2205 . . . 4  |-  ( A. x ( ph  <->  ps )  ->  ( { x  | 
ph }  =  {
z }  <->  { x  |  ps }  =  {
z } ) )
43abbidv 2314 . . 3  |-  ( A. x ( ph  <->  ps )  ->  { z  |  {
x  |  ph }  =  { z } }  =  { z  |  {
x  |  ps }  =  { z } }
)
54unieqd 3850 . 2  |-  ( A. x ( ph  <->  ps )  ->  U. { z  |  { x  |  ph }  =  { z } }  =  U. { z  |  {
x  |  ps }  =  { z } }
)
6 df-iota 5219 . 2  |-  ( iota
x ph )  =  U. { z  |  {
x  |  ph }  =  { z } }
7 df-iota 5219 . 2  |-  ( iota
x ps )  = 
U. { z  |  { x  |  ps }  =  { z } }
85, 6, 73eqtr4g 2254 1  |-  ( A. x ( ph  <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364   {cab 2182   {csn 3622   U.cuni 3839   iotacio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-uni 3840  df-iota 5219
This theorem is referenced by:  iotabidv  5241  iotabii  5242  iotaexel  5882  eusvobj1  5909
  Copyright terms: Public domain W3C validator