ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabi Unicode version

Theorem iotabi 5224
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotabi  |-  ( A. x ( ph  <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )

Proof of Theorem iotabi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 abbi 2307 . . . . . 6  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )
21biimpi 120 . . . . 5  |-  ( A. x ( ph  <->  ps )  ->  { x  |  ph }  =  { x  |  ps } )
32eqeq1d 2202 . . . 4  |-  ( A. x ( ph  <->  ps )  ->  ( { x  | 
ph }  =  {
z }  <->  { x  |  ps }  =  {
z } ) )
43abbidv 2311 . . 3  |-  ( A. x ( ph  <->  ps )  ->  { z  |  {
x  |  ph }  =  { z } }  =  { z  |  {
x  |  ps }  =  { z } }
)
54unieqd 3846 . 2  |-  ( A. x ( ph  <->  ps )  ->  U. { z  |  { x  |  ph }  =  { z } }  =  U. { z  |  {
x  |  ps }  =  { z } }
)
6 df-iota 5215 . 2  |-  ( iota
x ph )  =  U. { z  |  {
x  |  ph }  =  { z } }
7 df-iota 5215 . 2  |-  ( iota
x ps )  = 
U. { z  |  { x  |  ps }  =  { z } }
85, 6, 73eqtr4g 2251 1  |-  ( A. x ( ph  <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364   {cab 2179   {csn 3618   U.cuni 3835   iotacio 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-uni 3836  df-iota 5215
This theorem is referenced by:  iotabidv  5237  iotabii  5238  iotaexel  5878  eusvobj1  5905
  Copyright terms: Public domain W3C validator